Skip to main content

Advertisement

Log in

Fibrates protect against vascular endothelial dysfunction induced by paclitaxel and carboplatin chemotherapy for cancer patients: a pilot study

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Although we previously demonstrated that paclitaxel and carboplatin chemotherapy (TCchem) is associated with vascular toxicities, the underlying mechanisms remain unclear. Cisplatin is known to inhibit PPARα following microvascular damage to the kidneys. The primary aim of this study was to evaluate whether TCchem induces vascular endothelial dysfunction via systemic PPARα deficiency. In addition, human umbilical vein endothelial cells (HUVECs) were used to elucidate the mechanisms responsible for TCchem-induced vascular toxicities.

Methods

This study enrolled 45 gynecological cancer patients with normal lipid profiles who underwent surgical treatment followed by TCchem. The elevated triglyceride (TG) group included patients (n = 19) who exhibited hypertriglyceridemia during TCchem, and the stable TG group (n = 15) included patients with a normal TG level. Eleven patients exhibiting hypertriglyceridemia during TCchem were administered bezafibrate (fibrate group). Endothelial dysfunction was evaluated based on flow-mediated dilation (FMD) values and serum pentraxin-3 levels measured before TCchem and immediately after the final TCchem. HUVECs were used to elucidate the biological mechanisms underlying the endothelial dysfunction induced by TCchem.

Results

The administration of TCchem induced hypertriglyceridemia in 66 percent of the participants, and bezafibrate reduced the serum TG levels. Meanwhile, the decrease in flow-mediated dilatation (%FMD) induced by TCchem improved following treatment with bezafibrate. The serum pentraxin-3 level increased rapidly after TCchem and decreased following bezafibrate treatment. An in vitro examination demonstrated TCchem attenuated nitric oxide production and PPARα activity in HUVECs, which was partially improved by treatment with bezafibrate.

Conclusion

Bezafibrate prevents endothelial dysfunction induced by TCchem via TG-dependent and TG-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PtChem:

Platinum-based chemotherapy

TG:

Triglycerides

TCchem:

Paclitaxel and carboplatin combination chemotherapy

FMD:

Flow-mediated dilation

PPARα:

Peroxisome proliferator-activated receptor-α

OC:

Ovarian cancer

EC:

Endometrial cancer

CVD:

Cardiovascular disease

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

hsCRP:

High-sensitivity C-reactive protein

CDDP:

Cisplatin

CBDCA:

Carboplatin

PTX:

Paclitaxel

References

  1. Vogelzang NJ, Frenning DH, Kennedy BJ (1980) Coronary artery disease after treatment with bleomycin and vinblastine. Cancer Treat Rep 64:1159–1160

    CAS  PubMed  Google Scholar 

  2. Doll DC, List AF, Greco FA et al (1986) Acute vascular ischemic events after cisplatin-based combination chemotherapy for germ-cell tumors of the testis. Ann Intern Med 105:48–51

    Article  CAS  PubMed  Google Scholar 

  3. Lederman GS, Garnick MB (1987) Pulmonary emboli as a complication of germ cell cancer treatment. J Urol 137:1236–1237

    CAS  PubMed  Google Scholar 

  4. Haugnes HS, Aass N, Fossa SD et al (2007) Components of the metabolic syndrome in long-term survivors of testicular cancer. Ann Oncol 18:241–248

    Article  CAS  PubMed  Google Scholar 

  5. Nuver J, Smit AJ, Sleijfer DT et al (2004) Microalbuminuria, decreased fibrinolysis, and inflammation as early signs of atherosclerosis in long-term survivors of disseminated testicular cancer. Eur J Cancer 40:701–706

    Article  CAS  PubMed  Google Scholar 

  6. Vaughn DJ, Palmer SC, Carver JR et al (2008) Cardiovascular risk in long-term survivors of testicular cancer. Cancer 112:1949–1953

    Article  PubMed  Google Scholar 

  7. Meinardi MT, Gietema JA, van der Graaf WT et al (2000) Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J Clin Oncol 18:1725–1732

    CAS  PubMed  Google Scholar 

  8. Sagstuen H, Aass N, Fossa SD et al (2005) Blood pressure and body mass index in long-term survivors of testicular cancer. J Clin Oncol 23:4980–4990

    Article  CAS  PubMed  Google Scholar 

  9. Haugnes HS, Wethal T, Aass N et al (2010) Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer: a 20-year follow-up study. J Clin Oncol 28:4649–4657

    Article  PubMed  Google Scholar 

  10. Sekijima T, Tanabe A, Maruoka R et al (2011) Impact of platinum-based chemotherapy on the progression of atherosclerosis. Climacteric 14:31–40

    Article  CAS  PubMed  Google Scholar 

  11. Portilla D, Dai G, McClure T et al (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62:1208–1218

    Article  CAS  PubMed  Google Scholar 

  12. Portilla D, Dai G, Peters JM et al (2000) Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. Am J Physiol Renal Physiol 278:F667–675

    CAS  PubMed  Google Scholar 

  13. Schonefeld M, Noble S, Bertorello AM et al (1996) Hypoxia-induced amphiphiles inhibit renal Na+ , K(+)-ATPase. Kidney Int 49:1289–1296

    Article  CAS  PubMed  Google Scholar 

  14. Portilla D, Schnackenberg L, Beger RD (2007) Metabolomics as an extension of proteomic analysis: study of acute kidney injury. Semin Nephrol 27:609–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Vamecq J, Latruffe N (1999) Medical significance of peroxisome proliferator-activated receptors. Lancet 354:141–148

    Article  CAS  PubMed  Google Scholar 

  16. Haubenwallner S, Essenburg AD, Barnett BC et al (1995) Hypolipidemic activity of select fibrates correlates to changes in hepatic apolipoprotein C-III expression: a potential physiologic basis for their mode of action. J Lipid Res 36:2541–2551

    CAS  PubMed  Google Scholar 

  17. Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37:907–925

    CAS  PubMed  Google Scholar 

  18. Mantovani A, Garlanda C, Bottazzi B et al (2006) The long pentraxin PTX3 in vascular pathology. Vascul Pharmacol 45:326–330

    Article  CAS  PubMed  Google Scholar 

  19. Fazzini F, Peri G, Doni A et al (2001) PTX3 in small-vessel vasculitides: an independent indicator of disease activity produced at sites of inflammation. Arthritis Rheum 44:2841–2850

    Article  CAS  PubMed  Google Scholar 

  20. Kohn S, Fradis M, Podoshin L et al (1997) Endothelial injury of capillaries in the stria vascularis of guinea pigs treated with cisplatin and gentamicin. Ultrastruct Pathol 21:289–299

    Article  CAS  PubMed  Google Scholar 

  21. Kohn S, Fradis M, Ben-David J et al (2002) Nephrotoxicity of combined treatment with cisplatin and gentamicin in the guinea pig: glomerular injury findings. Ultrastruct Pathol 26:371–382

    Article  PubMed  Google Scholar 

  22. Kirchmair R, Walter DH, Li M et al (2005) Antiangiogenesis mediates cisplatin-induced peripheral neuropathy: attenuation or reversal by local vascular endothelial growth factor gene therapy without augmenting tumor growth. Circulation 111:2662–2670

    Article  CAS  PubMed  Google Scholar 

  23. Yoshikawa A, Saura R, Matsubara T et al (1997) A mechanism of cisplatin action: antineoplastic effect through inhibition of neovascularization. Kobe J Med Sci 43:109–120

    CAS  PubMed  Google Scholar 

  24. Belotti D, Vergani V, Drudis T et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    CAS  PubMed  Google Scholar 

  25. Steel DM, Whitehead AS (1994) The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 15:81–88

    Article  CAS  PubMed  Google Scholar 

  26. Hefler LA, Concin N, Hofstetter G et al (2008) Serum C-reactive protein as independent prognostic variable in patients with ovarian cancer. Clin Cancer Res 14:710–714

    Article  CAS  PubMed  Google Scholar 

  27. Garlanda C, Hirsch E, Bozza S et al (2002) Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420:182–186

    Article  CAS  PubMed  Google Scholar 

  28. Mantovani A, Garlanda C, Doni A et al (2008) Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3. J Clin Immunol 28:1–13

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Wu P, Yarlagadda P, Vadjunec NM et al (2004) PPAR alpha ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 286:F572–580

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Basnakian A, Bhatt R et al (2004) PPAR-alpha ligand ameliorates acute renal failure by reducing cisplatin-induced increased expression of renal endonuclease G. Am J Physiol Renal Physiol 287:F990–998

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Gokden N, Okusa MD et al (2005) Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 289:F469–480

    Article  CAS  PubMed  Google Scholar 

  32. Nagothu KK, Bhatt R, Kaushal GP et al (2005) Fibrate prevents cisplatin-induced proximal tubule cell death. Kidney Int 68:2680–2693

    Article  CAS  PubMed  Google Scholar 

  33. Vogel RA, Corretti MC, Plotnick GD (1997) Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol 79:350–354

    Article  CAS  PubMed  Google Scholar 

  34. Eiselein L, Wilson DW, Lame MW et al (2007) Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol 292:H2745–2753

    Article  CAS  PubMed  Google Scholar 

  35. Lundman P, Eriksson MJ, Silveira A et al (2003) Relation of hypertriglyceridemia to plasma concentrations of biochemical markers of inflammation and endothelial activation (C-reactive protein, interleukin-6, soluble adhesion molecules, von Willebrand factor, and endothelin-1). Am J Cardiol 91:1128–1131

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Gill R, Pedersen TL et al (2009) Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res 50:204–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48:353–374

    Article  CAS  PubMed  Google Scholar 

  38. Kureishi Y, Luo Z, Shiojima I et al (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271

    Article  CAS  PubMed  Google Scholar 

  40. Wolfrum S, Jensen KS, Liao JK (2003) Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol 23:729–736

    Article  CAS  PubMed  Google Scholar 

  41. Brouet A, Sonveaux P, Dessy C et al (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89:866–873

    Article  CAS  PubMed  Google Scholar 

  42. Martin G, Duez H, Blanquart C et al (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 107:1423–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yano M, Matsumura T, Senokuchi T et al (2007) Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res 100:1442–1451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Junko Hayashi, Akiko Hashimoto, and Kumiko Satoh for secretarial assistance. This study was supported by JSPS KAKENHI Grant Number 24592535.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Tanabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, A., Tanabe, A., Maruoka, R. et al. Fibrates protect against vascular endothelial dysfunction induced by paclitaxel and carboplatin chemotherapy for cancer patients: a pilot study. Int J Clin Oncol 20, 829–838 (2015). https://doi.org/10.1007/s10147-014-0779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-014-0779-y

Keywords

Navigation