International Journal of Clinical Oncology

, Volume 19, Issue 1, pp 186–192 | Cite as

Association of interleukin-10, tumor necrosis factor-α and transforming growth factor-β gene polymorphisms with the outcome of diffuse large B-cell lymphomas

  • Olivera Tarabar
  • Bojana Cikota-Aleksić
  • Ljiljana Tukić
  • Nenad Milanović
  • Aleksandar Aleksić
  • Zvonko Magić
Original Article

Abstract

Background

Published data indicate that common genetic variants in immune/inflammatory response genes can affect the outcome of diffuse large B-cell lymphomas (DLBCL). This study investigated the association of interleukin (IL)-10 (−3575,1082), tumor necrosis factor (TNF)-α308 and transforming growth factor (TGF)-βLeu10Pro gene polymorphisms with clinical characteristics and outcome of DLBCL patients treated with rituximab–CHOP therapy.

Methods

Between January 2004 and December 2007, a total of 84 patients with newly diagnosed DLBCL entered into this study. Genotypes were determined with PCR-based methodology.

Results

Patients presenting with B symptoms had IL-103575 TA/AA genotypes more frequently than TT genotype [odds ratio (OR) 2.89, 95 % confidence interval (CI) 1.11–7.57; p = 0.03]. Carriers of TGF-β Pro10 allele more frequently had an advanced clinical stage III/IV (OR 4.65, 95 % CI 1.33–16.19; p = 0.016) and intermediate-high/high IPI score (OR 5.37, 95 % CI 1.45–20.0; p = 0.012). In rituximab–CHOP-treated patients (n = 64), the TNF-α308 AG/AA carriers had shorter overall (p = 0.048) and event-free survival (p = 0.07) compared to GG carriers. In multivariate analysis of prognostic factors for survival, the TNF-α AG/AA genotypes were significantly associated with inferior survival of lymphoma patients (OR 0.23, 95 % CI 0.07–0.78; p = 0.018).

Conclusion

Our results indicate the association of IL-10 −3575 and TGF-β Leu10Pro gene variations with clinical characteristics. In patients treated with rituximab–CHOP therapy, the TNF-α308 AG/AA genotypes showed a significantly less favorable survival than the GG genotype.

Keywords

Diffuse large B-cell lymphoma Interleukin-10 Tumor necrosis factor-α Transforming growth factor-β Gene polymorphism 

References

  1. 1.
    Gatter KC, Warnke RA (2001) Diffuse large B-cell lymphoma. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) World Health Organization Classification of Tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 171–174Google Scholar
  2. 2.
    Coiffier B, Thieblemont C, Van Den Neste E et al (2010) Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de I’Adulte. Blood 116:2040–2045PubMedCrossRefGoogle Scholar
  3. 3.
    Habermann TM, Weller EA, Morrison VA et al (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24:3121–3127PubMedCrossRefGoogle Scholar
  4. 4.
    Pfreundschuh M, Trumper L, Osterborg A et al (2006) CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 7:379–391PubMedCrossRefGoogle Scholar
  5. 5.
    Pfreundschuh M, Schubert J, Ziepert M et al (2008) Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 9:105–116PubMedCrossRefGoogle Scholar
  6. 6.
    Chatterjee N, Hartge P, Cerhan JR et al (2004) Risk of non-Hodgkin’s lymphoma and family history of lymphatic, hematologic, and other cancers. Cancer Epidemiol Biomarkers Prev 13:1415–1421PubMedGoogle Scholar
  7. 7.
    Alexander DD, Mink PJ, Adami HO et al (2007) The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer 120(Suppl 12):1–39PubMedCrossRefGoogle Scholar
  8. 8.
    Keen LJ (2002) The extent and analysis of cytokine and cytokine receptor gene polymorphism. Transpl Immunol 10:143–146PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson AG, Symons JA, McDowell TL et al (1997) Effects of a polymorphism in human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199PubMedCrossRefGoogle Scholar
  10. 10.
    Escdale J, Gallagher G, Verweij C et al (1998) Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci USA 95:9465–9470CrossRefGoogle Scholar
  11. 11.
    Bidwell J, Keen L, Gallagher G et al (2001) Cytokine gene polymorphism in human disease: on-line databases, supplement 1. Genes Immun 2:61–70PubMedCrossRefGoogle Scholar
  12. 12.
    Czarneski J, Lin YC, Chong S et al (2004) Studies in IL-10 knockout mice of the requirement of IL-10 for progression of B-cell lymphoma. Leukemia 18:597–606PubMedCrossRefGoogle Scholar
  13. 13.
    Korner H, Cretney E, Wilhelm P et al (2000) Tumor necrosis factor sustains the generalized lymphoproliferative disorder (gld) phenotype. J Exp Med 191:89–96PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Karin M, Greten FR (2005) NF-kB: linking inflammation and immunity to cancer development and prognosis. Nat Rev Immunol 5:749–759PubMedCrossRefGoogle Scholar
  15. 15.
    Douglas RS, Capocasale RJ, Lamb RJ et al (1997) Chronic lymphocytic leukemia B cells are resistant to the apoptotic effects of transforming growth factor-beta. Blood 89:941–947PubMedGoogle Scholar
  16. 16.
    Moore KW, deWaal Malefyt R, Coffman RL et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19(68):3–765Google Scholar
  17. 17.
    Pasparakis M, Alexopulou L, Episkopou V et al (1996) Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in formation of primary B cell follicles, follicular dendritic networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411PubMedCrossRefGoogle Scholar
  18. 18.
    Ruscetti FW, Akel S, Bartelmez SH (2005) Autocrine transforming growth factor-β regulation of hematopoiesis: many outcomes that depend on the context. Oncogene 24:5751–5763PubMedCrossRefGoogle Scholar
  19. 19.
    Alas S, Emmanouilides Ch, Bonavida B (2001) Inhibition of interleukin-10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin Cancer Res 7:709–723PubMedGoogle Scholar
  20. 20.
    Rothman N, Skibola CF, Wang SS et al (2006) Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the Inter-Lymph Consortium. Lancet Oncol 7:27–38PubMedCrossRefGoogle Scholar
  21. 21.
    Purdue MP, Lan Q, Kricker A et al (2007) Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: findings from the New South Wales non-Hodgkin lymphoma study. Carcinogenesis 28:704–712PubMedCrossRefGoogle Scholar
  22. 22.
    Lan Q, Zheng T, Rothman N et al (2006) Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood 107:4101–4108PubMedCrossRefGoogle Scholar
  23. 23.
    Wang S, Cerhan J, Hartge P et al (2006) Common genetic variants in proinflammatory and other immunoregulatory genes and risk for non-Hodgkin lymphoma. Cancer Res 66:9771–9780PubMedCrossRefGoogle Scholar
  24. 24.
    Spink CF, Keen LJ, Mensah FK et al (2006) Association between non-Hodgkin lymphoma and haplotypes in the TNF region. BJ Haematol 133:293–300CrossRefGoogle Scholar
  25. 25.
    Lech-Maranda E, Baseggio L, Bienvenu J et al (2004) Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood 103:3529–3534PubMedCrossRefGoogle Scholar
  26. 26.
    Warzocha K, Ribeiro P, Bienvenu J et al (1998) Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin’s lymphoma outcome. Blood 91:357–381Google Scholar
  27. 27.
    Kube D, Hua TD, von Bonin F et al (2008) Effect of interleukin-10 gene polymorphisms on clinical outcome of patients with aggressive non-Hodgkin’s lymphoma: an exploratory study. Clin Cancer Res 14:3777–3784PubMedCrossRefGoogle Scholar
  28. 28.
    Shipp MA, Harrington DP, Anderson JR et al (1993) A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 329:987–994CrossRefGoogle Scholar
  29. 29.
    Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphoma. NCI Sponsored International Working Group. J Clin Oncol 17(4):1244–1253PubMedGoogle Scholar
  30. 30.
    Tang GJ, Huang SL, Yien HW et al (2000) Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med 28:2733–2736PubMedCrossRefGoogle Scholar
  31. 31.
    Sambrook J, Fritsch EF, Maniatis T (1989) Preparation of organic reagents. In: Nolan C (ed) Molecular cloning, a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, pp B4–B5Google Scholar
  32. 32.
    Perrey C, Turner SJ, Pravica V et al (1999) ARMS-PCR methodologies to determine IL-10, TNF-α, TNF-β, and TGF-β1 gene polymorphisms. Transpl Immunol 7:127–128PubMedCrossRefGoogle Scholar
  33. 33.
    Habermann TM, Wang SS, Maurer MJ et al (2008) Host immune gene polymorphisms in combination with clinical and demographic factors predicts late survival in diffuse large B-cell lymphoma patients in the pre-rituximab era. Blood 112:2694–2702PubMedCrossRefGoogle Scholar
  34. 34.
    Kobayashi D, Watanabe N, Yamauchi N et al (1997) Endogenous tumor necrosis factor as a predictor of doxorubicin sensitivity in leukemic patients. Blood 89:2472–2479PubMedGoogle Scholar
  35. 35.
    Jazirehi AR, Huerta-Yepez S, Cheng G et al (2005) Rituximab (chimeric anti CD20 monoclonal antibody) inhibits the constitutive nuclear factor-kB signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitisation to chemotherapeutic drug-induced apoptosis. Cancer Res 65:264–276PubMedGoogle Scholar
  36. 36.
    Mira J-P, Cariou A, Grall F et al (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality. JAMA 282:561–568PubMedCrossRefGoogle Scholar
  37. 37.
    Blay J-Y, Burdin N, Rousset F et al (1993) Serum interleukin-10 in non-Hodgkin’s lymphoma: a prognostic factor. Blood 82:2169–2174PubMedGoogle Scholar
  38. 38.
    Gibson AW, Edberg JC, Wu J et al (2001) Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-1-production and enhance the risk of systemic lupus erythematosus. J Immunol 166:3915–3922PubMedGoogle Scholar
  39. 39.
    Kube D, Hua TD, Kloss M et al (2007) The interleukin-10 gene promoter polymorphism −1087AG does not correlate with clinical outcome in non-Hodgkin’s lymphoma. Genes Immun 8:164–167PubMedCrossRefGoogle Scholar
  40. 40.
    Berglund M, Thunberg U, Roos G et al (2005) The interleukin-10 gene promoter polymorphism (−1082) does not correlate with clinical outcome in diffuse large B-cell lymphoma. Blood 105:4894–4895 (author reply 5)Google Scholar
  41. 41.
    Cambien F, Ricard S, Troesch A et al (1996) Polymorphisms of the transforming growth factor-β1 gene in relation to myocardial infarction and blood pressure: the Etude cas-Temoin de L’infarctus du Myocarde (ECTIM) Study. Hypertension 28:881–887Google Scholar
  42. 42.
    Dunning AM, Ellis PD, McBride S et al (2003) A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63:2610–2615PubMedGoogle Scholar
  43. 43.
    Crilly A, Hamilton J, Clark CJ et al (2002) Analysis of transforming growth factor beta1 gene polymorphisms in patients with systemic sclerosis. Ann Rheum Dis 61:678–681PubMedCrossRefGoogle Scholar
  44. 44.
    Arkwright PD, Laurie S, Super M et al (2000) TGF-beta(1) genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax 55:459–462PubMedCrossRefGoogle Scholar
  45. 45.
    Yokota M, Ichihara S, Lin TL et al (2000) Association of a T29>C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101:2783–2787PubMedCrossRefGoogle Scholar
  46. 46.
    Mazur G, Bogunia-Kubik K, Wrobel T et al (2006) TGF-β1 gene polymorphisms influence the course of the disease in non-Hodgkin’s lymphoma patients. Cytokine 33:145–149PubMedCrossRefGoogle Scholar
  47. 47.
    Padyukov L, Lampa J, Heimburger M et al (2003) Genetic markers for the efficacy of tumor necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis 62:526–529PubMedCrossRefGoogle Scholar
  48. 48.
    Reddy N, Hernandez-Ilizaliturri FJ, Deeb G et al (2008) Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol 140:36–45PubMedGoogle Scholar
  49. 49.
    Ivanov V, Tabouret E, Chuto G et al (2010) Rituximab-lenalidomide-dexamethasone induces complete and durable remission in relapsed refractory diffuse large B-cell non-Hodgkin lymphoma. Leuk Lymphoma 51:1758–1760PubMedCrossRefGoogle Scholar
  50. 50.
    Nowakowski GS, LaPlant B, Habermann TM et al (2011) Lenalidomide can be safely combined with R-CHOP (R2 CHOP) in the initial chemotherapy for aggressive B-cell lymphomas: phase I study. Leukemia 25:1877–1881PubMedCrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2013

Authors and Affiliations

  • Olivera Tarabar
    • 1
  • Bojana Cikota-Aleksić
    • 2
  • Ljiljana Tukić
    • 1
  • Nenad Milanović
    • 3
  • Aleksandar Aleksić
    • 4
  • Zvonko Magić
    • 2
  1. 1.Clinic of HematologyMilitary Medical AcademyBelgradeSerbia
  2. 2.Institute for Medical ResearchMilitary Medical AcademyBelgradeSerbia
  3. 3.Institute of Oncology and RadiologyBelgradeSerbia
  4. 4.Institute of Occupational HealthMilitary Medical AcademyBelgradeSerbia

Personalised recommendations