Skip to main content

Advertisement

Log in

Lung cancers unrelated to smoking: characterized by single oncogene addiction?

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Lung cancer is a major cause of cancer-related mortality worldwide. Currently, adenocarcinoma is its most common histological subtype in many countries. In contrast with small cell lung cancer or squamous cell carcinoma, lung adenocarcinoma often arises in never-smokers, especially in East Asian countries, as well as in smokers. Adenocarcinoma in never-smokers is associated with a lower incidence of genetic alterations (i.e., somatic mutations, loss of heterozygosity, and methylation) than in smokers. In addition, most adenocarcinomas in never-smokers harbor one of the proto-oncogene aberrations that occur in a mutually exclusive manner (EGFR mutation, KRAS mutation, HER2 mutations, or ALK translocation). It is of note that the proliferation and survival of lung cancer cells that harbor one of these oncogenic aberrations depend on the signaling from each aberrantly activated oncoprotein (oncogene addiction). Therefore, most adenocarcinomas in never-smokers can be effectively treated by molecularly targeted drugs that inhibit each oncoprotein. Moreover, from a pathological aspect, lung adenocarcinoma in never-smokers is characterized by terminal respiratory unit-type adenocarcinoma and a particular gene expression profile. Finally, epidemiological analyses have identified many candidate causes of lung cancer in never-smokers (genetic, environmental, and hormonal factors). The elucidation of the particular features of lung cancer unrelated to smoking and the development of new therapeutic modalities may reduce the mortality from lung cancers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  2. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  3. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311

    Article  PubMed  CAS  Google Scholar 

  4. Mitsudomi T, Yatabe Y (2007) Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98:1817–1824

    Article  PubMed  CAS  Google Scholar 

  5. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  PubMed  CAS  Google Scholar 

  6. Cohen MH, Williams GA, Sridhara R et al (2003) FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 8:303–306

    Article  PubMed  CAS  Google Scholar 

  7. Miller VA, Kris MG, Shah N et al (2004) Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 22:1103–1109

    Article  PubMed  CAS  Google Scholar 

  8. Sobue T, Yamamoto S, Hara M et al (2002) Cigarette smoking and subsequent risk of lung cancer by histologic type in middle-aged Japanese men and women: the JPHC study. Int J Cancer 99:245–251

    Article  PubMed  CAS  Google Scholar 

  9. Wynder EL, Muscat JE (1995) The changing epidemiology of smoking and lung cancer histology. Environ Health Perspect 103(Suppl 8):143–148

    Article  PubMed  Google Scholar 

  10. Sawabata N, Fujii Y, Asamura H et al (2011) Analysis of lung cancer registry cases resected in 2004 Japanese Joint Committee for Lung Cancer Registration. J Jpn Assoc Chest Surg 25:107–123

    Article  Google Scholar 

  11. Toh CK, Gao F, Lim WT et al (2006) Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol 24:2245–2251

    Article  PubMed  Google Scholar 

  12. Ahn MJ, Lee J, Park YH et al (2010) Korean ethnicity as compared with white ethnicity is an independent favorable prognostic factor for overall survival in non-small cell lung cancer before and after the oral epidermal growth factor receptor tyrosine kinase inhibitor era. J Thorac Oncol 5:1185–1196

    Article  PubMed  Google Scholar 

  13. Kobrinsky NL, Klug MG, Hokanson PJ et al (2003) Impact of smoking on cancer stage at diagnosis. J Clin Oncol 21:907–913

    Article  PubMed  Google Scholar 

  14. Sun S, Schiller JH, Gazdar AF (2007) Lung cancer in never smokers—a different disease. Nat Rev Cancer 7:778–790

    Article  PubMed  CAS  Google Scholar 

  15. Rudin CM, Avila-Tang E, Samet JM (2009) Lung cancer in never smokers: a call to action. Clin Cancer Res 15:5622–5625

    Article  PubMed  Google Scholar 

  16. Vital Statistics Japan (Ministry of Health Labour and Welfare (2011) cancer_mortality (1958–2009).xls. Available via Center for Cancer Control and Information Services, National Cancer Center, Japan. http://ganjohonccgojp/professional/statistics/statisticshtml#01. Accessed March 2011

  17. Katanoda K, Marugame T, Saika K et al (2008) Population attributable fraction of mortality associated with tobacco smoking in Japan: a pooled analysis of three large-scale cohort studies. J Epidemiol 18:251–264

    Article  PubMed  Google Scholar 

  18. Davis DL (1993) Trends in nonsmoking lung cancer. Epidemiology 4:489–492

    Article  PubMed  CAS  Google Scholar 

  19. Forastiere F, Perucci CA, Arca M et al (1993) Indirect estimates of lung cancer death rates in Italy not attributable to active smoking. Epidemiology 4:502–510

    Article  PubMed  CAS  Google Scholar 

  20. Samet JM, Avila-Tang E, Boffetta P et al (2009) Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 15:5626–5645

    Article  PubMed  Google Scholar 

  21. Wei Q, Gu J, Cheng L et al (1996) Benzo(a)pyrene diol epoxide-induced chromosomal aberrations and risk of lung cancer. Cancer Res 56:3975–3979

    PubMed  CAS  Google Scholar 

  22. Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  PubMed  CAS  Google Scholar 

  23. Sanchez-Cespedes M, Ahrendt SA, Piantadosi S et al (2001) Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 61:1309–1313

    PubMed  CAS  Google Scholar 

  24. Wong MP, Lam WK, Wang E et al (2002) Primary adenocarcinomas of the lung in nonsmokers show a distinct pattern of allelic imbalance. Cancer Res 62:4464–4468

    PubMed  CAS  Google Scholar 

  25. Wong MP, Fung LF, Wang E et al (2003) Chromosomal aberrations of primary lung adenocarcinomas in nonsmokers. Cancer 97:1263–1270

    Article  PubMed  Google Scholar 

  26. Job B, Bernheim A, Beau-Faller M et al (2010) Genomic aberrations in lung adenocarcinoma in never smokers. PLoS One 5:e15145

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki H, Takahashi T, Kuroishi T et al (1992) p53 mutations in non-small cell lung cancer in Japan: association between mutations and smoking. Cancer Res 52:734–736

    PubMed  CAS  Google Scholar 

  28. Ahrendt SA, Decker PA, Alawi EA et al (2001) Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer 92:1525–1530

    Article  PubMed  CAS  Google Scholar 

  29. Kosaka T, Yatabe Y, Endoh H et al (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64:8919–8923

    Article  PubMed  CAS  Google Scholar 

  30. Toyooka S, Tsuda T, Gazdar AF (2003) The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21:229–239

    Article  PubMed  CAS  Google Scholar 

  31. Riely GJ, Kris MG, Rosenbaum D et al (2008) Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 14:5731–5734

    Article  PubMed  CAS  Google Scholar 

  32. Pfeifer GP, Denissenko MF, Olivier M et al (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451

    Article  PubMed  CAS  Google Scholar 

  33. Toyooka S, Maruyama R, Toyooka KO et al (2003) Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int J Cancer 103:153–160

    Article  PubMed  CAS  Google Scholar 

  34. Toyooka S, Suzuki M, Tsuda T et al (2004) Dose effect of smoking on aberrant methylation in non-small cell lung cancers. Int J Cancer 110:462–464

    Article  PubMed  CAS  Google Scholar 

  35. Mitsudomi T, Kosaka T, Yatabe Y (2006) Biological and clinical implications of EGFR mutations in lung cancer. Int J Clin Oncol 11:190–198

    Article  PubMed  CAS  Google Scholar 

  36. Matsuo K, Ito H, Yatabe Y et al (2007) Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case–control study in Japanese. Cancer Sci 98:96–101

    Article  PubMed  CAS  Google Scholar 

  37. Stephens P, Hunter C, Bignell G et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431:525–526

    Article  PubMed  CAS  Google Scholar 

  38. Tomizawa K, Suda K, Onozato R et al (2011) Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer. doi:10.1016/j.lungcan.2011.01.014

  39. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  PubMed  CAS  Google Scholar 

  40. Inamura K, Takeuchi K, Togashi Y et al (2009) EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol 22:508–515

    Article  PubMed  CAS  Google Scholar 

  41. Shaw AT, Yeap BY, Mino-Kenudson M et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27:4247–4253

    Article  PubMed  CAS  Google Scholar 

  42. Takeuchi K, Choi YL, Togashi Y et al (2009) KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 15:3143–3149

    Article  PubMed  CAS  Google Scholar 

  43. Wong DW, Leung EL, Wong SK et al (2011) A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer. DOI: 10.1002/cncr.25843

  44. Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  PubMed  CAS  Google Scholar 

  45. Zell JA, Ou SH, Ziogas A et al (2005) Epidemiology of bronchioloalveolar carcinoma: improvement in survival after release of the 1999 WHO classification of lung tumors. J Clin Oncol 23:8396–8405

    Article  PubMed  Google Scholar 

  46. Blons H, Cote JF, Le Corre D et al (2006) Epidermal growth factor receptor mutation in lung cancer are linked to bronchioloalveolar differentiation. Am J Surg Pathol 30:1309–1315

    Article  PubMed  Google Scholar 

  47. Yatabe Y (2010) EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev 29:23–36

    Article  PubMed  CAS  Google Scholar 

  48. Yatabe Y, Mitsudomi T, Takahashi T (2002) TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol 26:767–773

    Article  PubMed  Google Scholar 

  49. Yatabe Y, Kosaka T, Takahashi T et al (2005) EGFR mutation is specific for terminal respiratory unit type adenocarcinoma. Am J Surg Pathol 29:633–639

    Article  PubMed  Google Scholar 

  50. Garber ME, Troyanskaya OG, Schluens K et al (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98:13784–13789

    Article  PubMed  CAS  Google Scholar 

  51. Bhattacharjee A, Richards WG, Staunton J et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98:13790–13795

    Article  PubMed  CAS  Google Scholar 

  52. Borczuk AC, Gorenstein L, Walter KL et al (2003) Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol 163:1949–1960

    Article  PubMed  CAS  Google Scholar 

  53. Tomida S, Koshikawa K, Yatabe Y et al (2004) Gene expression-based, individualized outcome prediction for surgically treated lung cancer patients. Oncogene 23:5360–5370

    Article  PubMed  CAS  Google Scholar 

  54. Takeuchi T, Tomida S, Yatabe Y et al (2006) Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. J Clin Oncol 24:1679–1688

    Article  PubMed  CAS  Google Scholar 

  55. Motoi N, Szoke J, Riely GJ et al (2008) Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 32:810–827

    Article  PubMed  Google Scholar 

  56. Beer DG, Kardia SL, Huang CC et al (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8:816–824

    PubMed  CAS  Google Scholar 

  57. Shibata T, Hanada S, Kokubu A et al (2007) Gene expression profiling of epidermal growth factor receptor/KRAS pathway activation in lung adenocarcinoma. Cancer Sci 98:985–991

    Article  PubMed  CAS  Google Scholar 

  58. Sordella R, Bell DW, Haber DA et al (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305:1163–1167

    Article  PubMed  CAS  Google Scholar 

  59. Wang SE, Narasanna A, Perez-Torres M et al (2006) HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10:25–38

    Article  PubMed  Google Scholar 

  60. Rodenhuis S, van de Wetering ML, Mooi WJ et al (1987) Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 317:929–935

    Article  PubMed  CAS  Google Scholar 

  61. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545

    Article  PubMed  CAS  Google Scholar 

  62. Mano H (2008) Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci 99:2349–2355

    Article  PubMed  CAS  Google Scholar 

  63. Politi K, Zakowski MF, Fan PD et al (2006) Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20:1496–1510

    Article  PubMed  CAS  Google Scholar 

  64. Ji H, Li D, Chen L et al (2006) The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9:485–495

    Article  PubMed  CAS  Google Scholar 

  65. Fisher GH, Wellen SL, Klimstra D et al (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15:3249–3262

    Article  PubMed  CAS  Google Scholar 

  66. Perera SA, Li D, Shimamura T et al (2009) HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci USA 106:474–479

    Article  PubMed  CAS  Google Scholar 

  67. Chen Z, Sasaki T, Tan X et al (2010) Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 70:9827–9836

    Article  PubMed  CAS  Google Scholar 

  68. Singh A, Greninger P, Rhodes D et al (2009) A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15:489–500

    Article  PubMed  CAS  Google Scholar 

  69. Sotillo R, Schvartzman JM, Socci ND et al (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464:436–440

    Article  PubMed  CAS  Google Scholar 

  70. Sun Y, Ren Y, Fang Z et al (2010) Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clin Oncol 28:4616–4620

    Article  PubMed  Google Scholar 

  71. Otterson GA, Kratzke RA, Coxon A et al (1994) Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9:3375–3378

    PubMed  CAS  Google Scholar 

  72. Shigematsu H, Gazdar AF (2006) Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 118:257–262

    Article  PubMed  CAS  Google Scholar 

  73. Marks JL, Gong Y, Chitale D et al (2008) Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 68:5524–5528

    Article  PubMed  CAS  Google Scholar 

  74. Marks JL, McLellan MD, Zakowski MF et al (2007) Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4. PLoS One 2:e426

    Article  PubMed  Google Scholar 

  75. Yousem SA, Nikiforova M, Nikiforov Y (2008) The histopathology of BRAF-V600E-mutated lung adenocarcinoma. Am J Surg Pathol 32:1317–1321

    Article  PubMed  Google Scholar 

  76. Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29: 2046-2051

    Google Scholar 

  77. Lee YJ, Cho BC, Jee SH et al (2010) Impact of environmental tobacco smoke on the incidence of mutations in epidermal growth factor receptor gene in never-smoker patients with non-small-cell lung cancer. J Clin Oncol 28:487–492

    Article  PubMed  CAS  Google Scholar 

  78. Olsson AC, Gustavsson P, Kromhout H et al (2011) Exposure to diesel motor exhaust and lung cancer risk in a pooled analysis from case–control studies in Europe and Canada. Am J Respir Crit Care Med 183: 941-948

    Google Scholar 

  79. Brenner DR, McLaughlin JR, Hung RJ (2011) Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One 6:e17479

    Article  PubMed  CAS  Google Scholar 

  80. Bell DW, Gore I, Okimoto RA et al (2005) Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 37:1315–1316

    Article  PubMed  CAS  Google Scholar 

  81. Ikeda K, Nomori H, Mori T et al (2008) Novel germline mutation: EGFR V843I in patient with multiple lung adenocarcinomas and family members with lung cancer. Ann Thorac Surg 85:1430–1432

    Article  PubMed  Google Scholar 

  82. Hung RJ, McKay JD, Gaborieau V et al (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452:633–637

    Article  PubMed  CAS  Google Scholar 

  83. Li Y, Sheu CC, Ye Y et al (2010) Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol 11:321–330

    Article  PubMed  CAS  Google Scholar 

  84. Liu Y, Inoue M, Sobue T et al (2005) Reproductive factors, hormone use and the risk of lung cancer among middle-aged never-smoking Japanese women: a large-scale population-based cohort study. Int J Cancer 117:662–666

    Article  PubMed  CAS  Google Scholar 

  85. Raso MG, Behrens C, Herynk MH et al (2009) Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res 15:5359–5368

    Article  PubMed  CAS  Google Scholar 

  86. Tan YK, Wee TC, Koh WP et al (2003) Survival among Chinese women with lung cancer in Singapore: a comparison by stage, histology and smoking status. Lung Cancer 40:237–246

    Article  PubMed  CAS  Google Scholar 

  87. Nordquist LT, Simon GR, Cantor A et al (2004) Improved survival in never-smokers vs current smokers with primary adenocarcinoma of the lung. Chest 126:347–351

    Article  PubMed  Google Scholar 

  88. Kawaguchi T, Takada M, Kubo A et al (2010) Performance status and smoking status are independent favorable prognostic factors for survival in non-small cell lung cancer: a comprehensive analysis of 26,957 patients with NSCLC. J Thorac Oncol 5:620–630

    PubMed  Google Scholar 

  89. Kosaka T, Yatabe Y, Onozato R et al (2009) Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol 4:22–29

    Article  PubMed  Google Scholar 

  90. Fujisawa T, Iizasa T, Saitoh Y et al (1999) Smoking before surgery predicts poor long-term survival in patients with stage I non-small-cell lung carcinomas. J Clin Oncol 17:2086–2091

    PubMed  CAS  Google Scholar 

  91. Hanagiri T, Sugio K, Mizukami M et al (2008) Significance of smoking as a postoperative prognostic factor in patients with non-small cell lung cancer. J Thorac Oncol 3:1127–1132

    Article  PubMed  Google Scholar 

  92. Lee DH, Han JY, Lee HG et al (2005) Gefitinib as a first-line therapy of advanced or metastatic adenocarcinoma of the lung in never-smokers. Clin Cancer Res 11:3032–3037

    Article  PubMed  CAS  Google Scholar 

  93. Mitsudomi T, Morita S, Yatabe Y et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11:121–128

    Article  PubMed  CAS  Google Scholar 

  94. Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  PubMed  CAS  Google Scholar 

  95. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  PubMed  CAS  Google Scholar 

  96. Cappuzzo F, Bemis L, Varella-Garcia M (2006) HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med 354:2619–2621

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported in part by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (20903076) and a grant from the Kobayashi Institute for Innovative Cancer Chemotherapy.

Conflict of interest

T. Mitsudomi serves as a consultant to Pfizer and Boehringer Ingelheim, and received honoraria from AstraZeneca and Chugai Pharmaceutical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Mitsudomi.

About this article

Cite this article

Suda, K., Tomizawa, K., Yatabe, Y. et al. Lung cancers unrelated to smoking: characterized by single oncogene addiction?. Int J Clin Oncol 16, 294–305 (2011). https://doi.org/10.1007/s10147-011-0262-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-011-0262-y

Keywords

Navigation