Abstract
Background
The aim of the study was to analyze in breast tumors the correlation between [18F]fluorodeoxyglucose (FDG) uptake assessed by positron emission tomography (PET) and histopathological and immunohistochemical prognostic factors.
Methods
FDG-PET combined with computed tomography (CT) was performed before surgery in 45 women with biopsy-proven primary breast cancer. The standardized uptake value (SUV) was compared with histopathological findings after surgery.
Results
A positive relationship was found between SUV and histological grade (p < 0.0001), histological type (p = 0.001), tumor size (p < 0.0435), estrogen receptor status (p < 0.0005), and progesterone receptor status (p = 0.002). FDG-PET/CT revealed unknown distant metastatic lesions in 2 of 12 patients with triple-negative breast cancer. The sensitivity of FDG-PET/CT for detecting axillary lymph node metastases was, respectively, 21% and 100% for pN1 and pN2 cases, whereas specificity was 100% for pN0.
Conclusion
SUV, a preoperative and noninvasive metabolic parameter, correlates with other known prognostic factors in breast cancer. This study provides valuable insight into the usefulness of FDG-PET/CT for preoperative staging of patients with triple-negative and poorly differentiated breast tumors but not for evaluating axillary lymph nodes and lobular carcinomas.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
American Cancer Society (2007) Cancer facts and figures. Atlanta, GA. http://www.cancer.org/downloads/STT/Global_cancer_facts_and_figures_2007_rev.pdf. Accessed 28 October 2009
Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717
Wahl RL, Siegel BA, Coleman RE et al (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 22:277–285
Veronesi U, De Cicco C, Galimberti VE et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18:473–478
Heusner TA, Kuemmel S, Hahn S et al (2009) Diagnostic value of full-dose FDG-PET/CT for axillary lymph node staging in breast cancer patients. Eur J Nucl Med Mol Imaging 36:1543–1550
Avril N, Rose CA, Schelling M et al (2000) Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 18:3495–3502
Dose Schwarz J, Bader M, Jenicke L et al (2005) Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 467:1144–1150
Avril N, Schelling M, Dose J et al (1999) Utility of PET in breast cancer. Clin Positron Imaging 2:261–271
Baum RP, Przetak C (2001) Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET). Q J Nucl Med 45:257–268
Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83
Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621
Singletary SE, Allred C, Ashley P et al (2002) Revision of the American joint Committee on cancer staging system for breast cancer. J Clin Oncol 20:3628–3636
Oshida M, Uno K, Suzuki M et al (1998) Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-d-glucose. Cancer 82:2227–2234
Avril N, Menzel M, Dose J et al (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42:9–16
Bos R, van Der Hoeven JJ, van Der Wall E et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387
Buck A, Schirrmeister H, Kuhn T et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29:1317–1323
Cermik TF, Mavi A, Basu S et al (2008) Impact of FDG PET on the preoperative staging of newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging 35:475–483
Avril N, Bense S, Ziegler SI et al (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38:1186–1191
Crowe JP, Adler LP, Shenk RR et al (1994) Positron emission tomography and breast masses: comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1:132–140
Inoue T, Yutani K, Taguchi T et al (2004) Preoperative evaluation of prognosis in breast cancer patients by [(18)F]2-deoxy-2-fluoro-d-glucose-positron emission tomography. J Cancer Res Clin Oncol 130:273–278
Gil-Rendo A, Martinez-Regueira F, Zornoza G et al (2009) Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg 96:166–170
Basu S, Chen W, Tchou J et al (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112:995–1000
Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast cancer Study. J Am Med Assoc 295:2492–2502
Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of oestrogen receptor-negative, progesterone receptor-negative and HER 2-negative invasive breast cancer, the so called triple negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728
Kim J, Lee J, Chang E et al (2009) Selective sentinel node plus additional non-sentinel node biopsy based on an FDG PET/CT scan in early breast cancer patients: single institutional experience. World J Surg 33:943–949
Conflict of interest
No author has any conflict of interest.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Heudel, P., Cimarelli, S., Montella, A. et al. Value of PET-FDG in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol 15, 588–593 (2010). https://doi.org/10.1007/s10147-010-0120-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10147-010-0120-3