Skip to main content

Advertisement

Log in

Novel therapeutic strategy for uterine endometrial cancers

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

In general, tumors induce angiogenic factors specific to them, which leads to angiogenesis with tumor progression. However, angiogenesis in uterine endometrial cancers is complicated because the hormone dependency in their growth also modifies the angiogenic potential. Therefore, angiogenic potential in uterine endometrial cancers must be thoroughly analyzed. The upstream of the vascular endothelial growth factor (VEGF) gene conserves estrogen-responsive elements. Progesterone primed with estrogen induces thymidine phosphorylase (TP) in the uterine endometrium. Sex steroid-dependent VEGF and TP are highly expressed in early-stage and well-differentiated uterine endometrial cancers, and basic fibroblast growth factor (bFGF) is highly expressed in advanced and poorly differentiated uterine endometrial cancers. A transcriptional factor for angiogenesis, E26 transformation specific (ETS-1), is linked to VEGF in well-differentiated uterine endometrial cancers, and to bFGF in poorly differentiated uterine endometrial cancers. Therefore, even if dedifferentiation and angiogenic switching occur due to tumor progression and long-term hormone therapy, the inhibition of ETS-1, along with inhibition of the main angiogenic factors, may be an effective strategy to suppress uterine endometrial cancers as a novel antiangiogenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    Article  PubMed  CAS  Google Scholar 

  2. Fujimoto J, Ichigo S, Hori M, et al. (1997) Expression of basic fibroblast growth factor and its mRNA in advanced uterine cervical cancers. Cancer Lett 111:21–26

    Article  PubMed  CAS  Google Scholar 

  3. Fujimoto J, Hori M, Ichigo S, et al. (1995) Expression of basic fibroblast growth factor and its mRNA in uterine endometrial cancers. Invasion Metastasis 15:203–210

    PubMed  CAS  Google Scholar 

  4. Fujimoto J, Ichigo S, Sakaguchi H, et al. (1999) The expression of platelet-derived endothelial cell growth factor in uterine cervical cancers. Br J Cancer 79:1249–1254

    Article  PubMed  CAS  Google Scholar 

  5. Fujimoto J, Sakaguchi H, Hirose R, et al. (1999) Clinical implication of expression of platelet-derived endothelial cell growth factor (PD-ECGF) in metastatic lesions of uterine cervical cancers. Cancer Res 59:3041–3044

    PubMed  CAS  Google Scholar 

  6. Fujimoto J, Sakaguchi H, Aoki I, et al. (2000) The value of plateletderived endothelial cell growth factor as a novel predictor of advancement of uterine cervical cancers. Cancer Res 60: 3662–3665

    PubMed  CAS  Google Scholar 

  7. Fujimoto J, Ichigo S, Sakaguchi H, et al. (1998) Expression of platelet-derived endothelial cell growth factor (PD-ECGF) and its mRNA in uterine endometrial cancers. Cancer Lett 130:115–120

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto J, Sakaguchi H, Hirose R, et al. (1999) Expression of vascular endothelial growth factor (VEGF) and its mRNA in uterine cervical cancers. Br J Cancer 80:827–833

    Article  PubMed  CAS  Google Scholar 

  9. Fujimoto J, Ichigo S, Hirose R, et al. (1998) Expressions of vascular endothelial growth factor (VEGF) and its mRNA in uterine endometrial cancers. Cancer Lett 134:15–22

    Article  PubMed  CAS  Google Scholar 

  10. Fujimoto J, Sakaguchi H, Aoki I, et al. (2000) Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Res 60:2632–2635

    PubMed  CAS  Google Scholar 

  11. Fujimoto J, Aoki I, Khatun S, et al. (2002) Clinical implications of interleukin-8 related to myometrial invasion with angiogenesis in uterine endometrial cervical cancers. Ann Oncol 13:430–434

    Article  PubMed  CAS  Google Scholar 

  12. Toyoki H, Fujimoto J, Sato E, et al. (2005) Clinical implications of expression of cyclooxygenase-2 related to angiogenesis in uterine endometrial cancers. Ann Oncol 16:52–55

    Article  Google Scholar 

  13. Fujimoto J, Ichigo S, Sakaguchi H, et al. (1998) Expression of platelet-derived endothelial cell growth factor in uterine endometrium during the menstrual cycle. Mol Hum Reprod 4:509–513

    Article  PubMed  CAS  Google Scholar 

  14. Fujimoto J, Sakaguchi H, Hirose R, et al. (1999) Progestins suppress estrogen-induced expression of vascular endothelial growth factor (VEGF) subtypes in uterine endometrial cancer cells. Cancer Lett 141:63–71

    Article  PubMed  CAS  Google Scholar 

  15. Rochels R (1984) Pathobiochemical aspects of corneal neovascularization. Fortschr Med 102:101–102

    PubMed  CAS  Google Scholar 

  16. Harada S, Nagy JA, Sullivan KA, et al. (1994) Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J Clin Invest 93:2490–2496

    Article  PubMed  CAS  Google Scholar 

  17. Sunderkotter C, Steinbrink K, Goebeler M, et al. (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    PubMed  CAS  Google Scholar 

  18. Ben-Av P, Crofford LJ, Wilder RL, et al. (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372:83–87

    Article  PubMed  CAS  Google Scholar 

  19. Suri C, Jones PF, Patan, S, et al. (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  20. Asahara T, Chen D, Takahashi T, et al. (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240

    PubMed  CAS  Google Scholar 

  21. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  22. Huang LE, Arany Z, Livingston DM, et al. (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259

    Article  PubMed  CAS  Google Scholar 

  23. Kallio PJ, Pongratz I, Gradin K, et al. (1997) Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci USA 94:5667–5672

    Article  PubMed  CAS  Google Scholar 

  24. Ema M, Taya S, Yokotani N, et al. (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273–4278

    Article  PubMed  CAS  Google Scholar 

  25. Maxwell PH, Dachs GU, Gleadle JM, et al. (1997) Hypoxiainducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94:8104–8109

    Article  PubMed  CAS  Google Scholar 

  26. Carmeliet P, Dor Y, Herbert JM, et al. (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  PubMed  CAS  Google Scholar 

  27. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    Article  PubMed  CAS  Google Scholar 

  28. Fujimoto J, Alam SM, Jahan I, et al. (2006) Plausible linkage of hypoxia inducible factors (HIF)-1α in uterine cervical cancers. Cancer Sci 97:861–867

    Article  PubMed  CAS  Google Scholar 

  29. Wernert N, Raes MB, Lassalle P, et al. (1992) c-ets proto-oncogene is a transcription factor expressed in endothelial cells during tumor vascularization and other forms of angiogenesis in humans. Am J Pathol 140:119–127

    PubMed  CAS  Google Scholar 

  30. Kola I, Brookes S, Green AR, et al. (1993) The Ets-1 transcription factor is widely expressed during murine embryo development and is associated with mesodermal cells involved in morphogenic process such as organ formation. Proc Natl Acad Sci USA 90:7588–7592

    Article  PubMed  CAS  Google Scholar 

  31. Maroulakou IG, Papas TS, Green JE (1994) Differential expression of ets-1 and ets-2 proto-oncogenes during murine embryogenesis. Oncogene 9:1511–1565

    Google Scholar 

  32. Iwasaka C, Tanaka K, Abe M, et al. (1996) Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascular endothelial cells. J Cell Physiol 169:522–531

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka K, Abe M, Sato Y (1999) Roles of extracellular signalregulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 90:647–654

    PubMed  CAS  Google Scholar 

  34. Oda N, Abe M, Sato Y (1999) ETS-1 converts endothelial cells to the angiogenic phenotype by inducing the expression of matrix metalloproteinases and integrin β3. J Cell Physiol 178:121–132

    Article  PubMed  CAS  Google Scholar 

  35. Sato Y, Abe M, Tanaka K, et al. (2000) Signal transduction and transcriptional regulation of angiogenesis. Adv Exp Med Biol 476:109–115

    PubMed  CAS  Google Scholar 

  36. Fujimoto J, Aoki I, Toyoki H, et al. (2002) Clinical implications of ETS-1 related to angiogenesis in uterine cervical cancers. Ann Oncol 13:1598–1604

    Article  PubMed  CAS  Google Scholar 

  37. Fujimoto J, Aoki I, Toyoki H, et al. (2002) Clinical implications of ETS-1 related to angiogenesis in uterine endometrial cancers. Ann Oncol 13:1605–1611

    Article  PubMed  CAS  Google Scholar 

  38. Strieter RM, Kunkel SL, Arenberg DA, et al. (1995) Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 210:51–57

    Article  PubMed  CAS  Google Scholar 

  39. Sato E, Fujimoto J, Toyoki H, et al. (2007) Expression of IP-10 related to angiogenesis in uterine cervical cancers. Br J Cancer 96:1735–1739

    Article  PubMed  CAS  Google Scholar 

  40. Sato E, Fujimoto J, Tamaya T (2007) Expression of interferon-gamma-inducible protein-10 related to angiogenesis in uterine endometrial cancers. Oncology-Basel 73:246–251

    Article  CAS  Google Scholar 

  41. Fujimoto J, Hori M, Ichigo S, et al. (1997) Plausible novel therapeutic strategy of uterine endometrial cancer with reduction of basic fibroblast growth factor secretion by progestin and O-(chloroacetyl-carbamoyl) fumagillol (TNP-470; AGM-1470). Cancer Lett 113:187–194

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Fujimoto.

About this article

Cite this article

Fujimoto, J. Novel therapeutic strategy for uterine endometrial cancers. Int J Clin Oncol 13, 411–415 (2008). https://doi.org/10.1007/s10147-008-0825-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-008-0825-8

Key words

Navigation