Epigenetics in bladder cancer

Abstract

Bladder cancer (BC) is the second most common malignancy of the genitourinary tract and the second leading cause of cancer death in patients with urinary tract malignancies. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Aberrant epigenetic events such as DNA hypermethylation and altered histone acetylation have both been observed in bladder cancer, in which they affect a large number of genes. Although the list of aberrantly epigenetically regulated genes continues to grow, combination analysis including several candidate genes has given promising results of potential tumor biomarkers for the early diagnosis and risk assessment of bladder cancer. Thus, large-scale screening of aberrant epigenetic events such as DNA hypermethylation is needed to identify bladder cancer-specific epigenetic fingerprints. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to the reactivation of silenced genes. In this review, we examine the current literature on epigenetic changes in bladder cancer and discuss the clinical potential of cancer epigenetics for the diagnosis and treatment of this disease.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Jemal A, Siegel R, Ward E, et al. (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    PubMed  Article  Google Scholar 

  2. 2.

    Parkin DM, Bray F, Ferlay J, et al. (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    PubMed  Google Scholar 

  3. 3.

    Holmang S, Hedelin H, Anderstrom C, et al. (1995) The relationship among multiple recurrences, progression and prognosis of patients with stages Ta and T1 transitional cell cancer of the bladder followed for at least 20 years. J Urol 153:1823–1826

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Mitra AP, Datar RH, Cote RJ (2006) Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol 24:5552–5564

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Kawakami K, Enokida H, Tachiwada T, et al. (2007) Increased SKP2 and CKS1 gene expression contributes to the progression of human urothelial carcinoma. J Urol 178:301–307

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Kawakami K, Enokida H, Tachiwada T, et al. (2006) Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling. Oncol Rep 16:521–531

    PubMed  CAS  Google Scholar 

  7. 7.

    Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Baylin SB, Makos M, Wu JJ, et al. (1991) Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells 3:383–390

    PubMed  CAS  Google Scholar 

  11. 11.

    Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421:448–453

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Marks PA, Rifkind RA, Richon VM, et al. (2001) Inhibitors of histone deacetylase are potentially effective anticancer agents. Clin Cancer Res 7:759–760

    PubMed  CAS  Google Scholar 

  15. 15.

    Xu W, Cho H, Evans RM (2003) Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol 364:205–223

    PubMed  CAS  Google Scholar 

  16. 16.

    Markl ID, Cheng J, Liang G, et al. (2001) Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time. Cancer Res 61:5875–5884

    PubMed  CAS  Google Scholar 

  17. 17.

    Marsit CJ, Houseman EA, Schned AR, et al. (2007) Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis 28:1745–1751

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Marsit CJ, Karagas MR, Danaee H, et al. (2006) Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27:112–116

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Fernandez PL, Jares P, Rey MJ, et al. (1998) Cell cycle regulators and their abnormalities in breast cancer. Mol Pathol 51:305–309

    PubMed  CAS  Google Scholar 

  20. 20.

    Kawamoto K, Enokida H, Gotanda T, et al. (2006) p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochem Biophys Res Commun 339:790–796

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Chan MW, Chan LW, Tang NL, et al. (2002) Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 8:464–470

    PubMed  CAS  Google Scholar 

  22. 22.

    Dulaimi E, Uzzo RG, Greenberg RE, et al. (2004) Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 10:1887–1893

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Friedrich MG, Weisenberger DJ, Cheng JC, et al. (2004) Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin Cancer Res 10:7457–7465

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Hoque MO, Begum S, Topaloglu O, et al. (2006) Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J Natl Cancer Inst 98:996–1004

    PubMed  CAS  Google Scholar 

  25. 25.

    Yates DR, Rehman I, Abbod MF, et al. (2007) Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res 13:2046–2053

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Friedrich MG, Chandrasoma S, Siegmund KD, et al. (2005) Prognostic relevance of methylation markers in patients with nonmuscle invasive bladder carcinoma. Eur J Cancer 41:2769–2778

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Hoffmann MJ, Florl AR, Seifert HH, et al. (2005) Multiple mechanisms downregulate CDKN1C in human bladder cancer. Int J Cancer 114:406–413

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Chang LL, Yeh WT, Yang SY, et al. (2003) Genetic alterations of p16INK4a and p14ARF genes in human bladder cancer. J Urol 170:595–600

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Valenzuela MT, Galisteo R, Zuluaga A, et al. (2002) Assessing the use of p16(INK4a) promoter gene methylation in serum for detection of bladder cancer. Eur Urol 42:622–628

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Tada Y, Wada M, Taguchi K, et al. (2002) The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res 62:4048–4053

    PubMed  CAS  Google Scholar 

  31. 31.

    Domínguez G, Carballido J, Silva J, et al. (2002) p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res 8:980–985

    PubMed  Google Scholar 

  32. 32.

    Maruyama R, Toyooka S, Toyooka KO, et al. (2001) Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res 61:8659–8663

    PubMed  CAS  Google Scholar 

  33. 33.

    Muto S, Horie S, Takahashi S, et al. (2000) Genetic and epigenetic alterations in normal bladder epithelium in patients with metachronous bladder cancer. Cancer Res 60:4021–4025

    PubMed  CAS  Google Scholar 

  34. 34.

    Orlow I, LaRue H, Osman I, et al. (1999) Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol 155:105–113

    PubMed  CAS  Google Scholar 

  35. 35.

    Gonzalgo ML, Hayashida T, Bender CM, et al. (1998) The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res 58:1245–1252

    PubMed  CAS  Google Scholar 

  36. 36.

    Wakatsuki S, Watanabe R, Saito K, et al. (1996) Loss of human E-cadherin (ECD) correlated with invasiveness of transitional cell cancer in the renal pelvis, ureter and urinary bladder. Cancer Lett 103:11–17

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Popov Z, Gil-Diez de Medina S, Lefrere-Belda MA, et al. (2000) Low E-cadherin expression in bladder cancer at the transcriptional and protein level provides prognostic information. Br J Cancer 83:209–214

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Horikawa Y, Sugano K, Shigyo M, et al. (2003) Hypermethylation of an E-cadherin (CDH1) promoter region in high grade transitional cell carcinoma of the bladder comprising carcinoma in situ. J Urol 169:1541–1545

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Ribeiro-Filho LA, Franks J, Sasaki M, et al. (2002) CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol Carcinog 34:187–198

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Bornman DM, Mathew S, Alsruhe J, et al. (2001) Methylation of the E-cadherin gene in bladder neoplasia and in normal urothelial epithelium from elderly individuals. Am J Pathol 159:831–835

    PubMed  CAS  Google Scholar 

  41. 41.

    Ellinger J, El Kassem N, Heukamp LC, et al. (2008) Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J Urol 179:346–352

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Henderson CJ, McLaren AW, Moffat GJ, et al. (1998) Pi-class glutathione S-transferase: regulation and function. Chem Biol Interact 111–112:69–82

    PubMed  Google Scholar 

  43. 43.

    Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97:103–115

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Esteller M, Herman JG (2004) Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23:1–8

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Song MS, Song SJ, Ayad NG, et al. (2004) The tumour suppressor RASSF1A regulates mitosis by inhibiting the APCCdc20 complex. Nat Cell Biol 6:129–137

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Burbee DG, Forgacs E, Zochbauer-Muller S, et al. (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Liu L, Yoon JH, Dammann R, et al. (2002) Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene 21:6835–6840

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Kuzmin I, Gillespie JW, Protopopov A, et al. The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res 62:3498–3502

  49. 49.

    Chan MW, Chan LW, Tang NL, et al. (2003) Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int J Cancer 104:611–616

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Lee MG, Kim HY, Byun DS, et al. (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61:6688–6692

    PubMed  CAS  Google Scholar 

  51. 51.

    Salem C, Liang G, Tsai YC, et al. (2000) Progressive increases in de novo methylation of CpG islands in bladder cancer. Cancer Res 60:2473–2476

    PubMed  CAS  Google Scholar 

  52. 52.

    Habuchi T, Takahashi T, Kakinuma H, et al. (2001) Hypermethylation at 9q32-33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene 20:531–537

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Habuchi T, Luscombe M, Elder PA, et al. (1998) Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32–q33. Genomics 48:277–288

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Christoph F, Weikert S, Kempkensteffen C, et al. (2006) Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder. Int J Cancer 119:1396–1402

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Urakami S. Shiina H, Enokida H, et al. (2006) Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin Cancer Res 12:2109–2116

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Urakami S, Shiina H, Enokida H, et al. (2006) Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 12:383–391

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Marsit CJ, Karagas MR, Andrew A, et al. (2005) Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. Cancer Res 65:7081–7085

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Tada Y, Wada M, Kuroiwa K, et al. (2000) MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res 6:4618–4627

    PubMed  CAS  Google Scholar 

  59. 59.

    Urnov FD (2002) Methylation and the genome: the power of a small amendment. J Nutr 132(8 Suppl):2450–2456

    Google Scholar 

  60. 60.

    Byun HM, Wong HL, Birnstein EA, et al. (2007) Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res 67:10753–10758

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Takai D, Gonzales FA, Tsai YC, et al. (2001) Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet 10:2619–2626

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Ogishima T, Shiina H, Breault JE, et al. (2005) Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene 24:6765–6772

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Issa JP (2007) DNA methylation as a therapeutic target in cancer. Clin Cancer Res 13:1634–1637

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Cheng JC, Weisenberger DJ, Gonzales FA, et al. (2004) Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 24:1270–1278

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Ben-Kasus T, Ben-Zvi Z, Marquez VE, et al. (2005) Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol 70:121–133

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Christoph F, Kempkensteffen C, Weikert S, et al. (2006) Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br J Cancer 95:1701–1707

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Velicescu M, Weisenberger DJ, Gonzales FA, et al. (2002) Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res 62:2378–2384

    PubMed  CAS  Google Scholar 

  68. 68.

    Sachs MD, Ramamurthy M, Poel H, et al. (2004) Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells. Cancer Gene Ther 11:477–486

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Pong RC, Roark R, Ou JY, et al. (2006) Mechanism of increased coxsackie and adenovirus receptor gene expression and adenovirus uptake by phytoestrogen and histone deacetylase inhibitor in human bladder cancer cells and the potential clinical application. Cancer Res 66:8822–8828

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Antequera F, Bird A (1999) CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 9:661–667

    Article  Google Scholar 

  71. 71.

    Fuks F, Burgers WA, Godin N, et al. (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Robertson KD, Ait-Si-Ali S, Yokochi T, et al. (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Buckley MT, Yoon J, Yee H, et al. (2007) The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo. J Transl Med 5:49–60

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Karam JA, Fan J, Stanfield J, et al. (2007) The use of histone deacetylase inhibitor FK228 and DNA hypomethylation agent 5-azacytidine in human bladder cancer therapy. Int J Cancer 120:1795–1802

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Ransohoff DF (2003) Cancer. Developing molecular biomarkers for cancer. Science 299:1679–1680

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Herman JG, Graff JR, Myohanen S, et al. (1996) Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Clark SJ, Harrison J, Paul CL, et al. (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Costello JF, Plass C, Cavenee WK (2000) Aberrant methylation of genes in low-grade astrocytomas. Brain Tumor Pathol 17:49–56

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Santourlidis S, Florl A, Ackermann R, et al. (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Lee WH, Isaacs WB, Bova GS, et al. (1997) CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Biomarkers Prev 6:443–450

    PubMed  CAS  Google Scholar 

  82. 82.

    Herman JG, Latif F, Weng Y, et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Battagli C, Uzzo RG, Dulaimi E, et al. (2003) Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 63:8695–8699

    PubMed  CAS  Google Scholar 

  84. 84.

    Ricciardiello L, Goel A, Mantovani V, et al. (2003) Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer. Cancer Res 63:787–792

    PubMed  CAS  Google Scholar 

  85. 85.

    Kawakami K, Brabender J, Lord RV, et al. (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92:1805–1811

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Sathyanarayana UG, Maruyama R, Padar A, et al. (2004) Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res 64:1425–1430

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Yates DR, Rehman I, Meuth M, et al. (2006) Methylational urinalysis: a prospective study of bladder cancer patients and age stratified benign controls. Oncogene 25:1984–1988

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Liang G, Gonzales FA, Jones PA, et al. (2002) Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res 62:961–966

    PubMed  CAS  Google Scholar 

  89. 89.

    Aleman A, Adrien L, Lopez-Serra L, et al. (2007) Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 98:466–473

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Sasaki M, Anast J, Bassett W, et al. (2003) Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochem Biophys Res Commun 309:305–309

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Ehrich M, Nelson MR, Stanssens P, et al. (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102:15785–15790

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Esquela-Kerscher A, Slack FJ (2006) Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Lagos-Quintana M, Rauhut R, Lendeckel W, et al. (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Huang JC, Babak T, Corson TW, et al. (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Kim WJ, Kim EJ, Jeong P, et al. (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65:9347–9354

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Yu J, Zhu T, Wang Z, et al. (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13:7296–7304

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Hoque MO, Begum S, Brait M, et al. (2008) Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer. J Urol 179:743–747

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hideki Enokida.

About this article

Cite this article

Enokida, H., Nakagawa, M. Epigenetics in bladder cancer. Int J Clin Oncol 13, 298–307 (2008). https://doi.org/10.1007/s10147-008-0811-1

Download citation

Key words

  • Bladder cancer
  • Epigenetics
  • Methylation
  • Histone modification
  • Microrna
  • Biomarker