Population Ecology

, Volume 60, Issue 1–2, pp 111–125 | Cite as

The relationship of mammal survivorship and body mass modeled by metabolic and vitality theories

  • James J. AndersonEmail author
SPECIAL FEATURE: ORIGINAL ARTICLE Evolutionary demography: the dynamic and broad intersection of ecology and evolution


A model describes the relationship between mammal body mass and survivorship by combining replicative senescence theory postulating a cellular basis of aging, metabolic theory relating metabolism to body mass, and vitality theory relating survival to vitality loss and extrinsic mortality. In the combined framework, intrinsic mortality results from replicative senescence of the hematopoietic stem cells and extrinsic mortality results from environmental challenges. Because the model expresses the intrinsic and extrinsic rates with different powers of body mass, across the spectrum of mammals, survivorship changes from Type I to Type II curve shapes with decreasing body mass. Fitting the model to body mass and maximum lifespan data of 494 nonvolant mammals yields allometric relationships of body mass to the vitality parameters, from which full survivorship profiles were generated from body mass alone. Because maximum lifespan data is predominantly derived from captive populations, the generated survivorship curves were dominated by intrinsic mortality. Comparison of the mass-derived and observed survivorship curves provides insights into how specific populations deviate from the aggregate of populations observed under captivity.


AnAge database Hematopoiesis Macroecology theory Maximum lifespan Replicative senescence 



I wish to acknowledge the two reviewers whose comments greatly improved the analysis and organization of the manuscript. This work was supported by National Institute of Health Grant R21AG046760.

Compliance with ethical standards

Conflict of interest

The author declares that there are no conflicts of interest.


  1. Abkowitz JL, Catlin SN, McCallie MT, Guttorp P (2002) Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 100:2665–2667CrossRefPubMedGoogle Scholar
  2. Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–734CrossRefPubMedGoogle Scholar
  3. Anderson JJ (2000) A vitality-based model relating stressors and environmental properties to organism survival. Ecol Monogr 70:445–470CrossRefGoogle Scholar
  4. Anderson JJ, Li T, Sharrow DJ (2017) Insights into mortality patterns and causes of death through a process point of view model. Biogerontology 18:149–170CrossRefPubMedGoogle Scholar
  5. Banavar JR, Moses ME, Brown JH, Damuth J, Rinaldo A, Sibly RM, Maritan A (2010) A general basis for quarter-power scaling in animals. Proc Natl Acad Sci USA 107:15816–15820CrossRefPubMedGoogle Scholar
  6. Beerman I (2017) Accumulation of DNA damage in the aged hematopoietic stem cell compartment. Semin Hematol 54:12–18CrossRefPubMedGoogle Scholar
  7. Beerman I, Rossi DJ (2014) Epigenetic regulation of hematopoietic stem cell aging. Exp Cell Res 329:192–199CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bellinger DL, Lorton D (2014) Autonomic regulation of cellular immune function. Auton Neurosci 182:15–41CrossRefPubMedGoogle Scholar
  9. Benson RBJ, Frigot RA, Goswami A, Andres B, Butler RJ (2014) Competition and constraint drove Cope’s rule in the evolution of giant flying reptiles. Nat Commun 5:3567CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198CrossRefPubMedGoogle Scholar
  11. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272CrossRefPubMedGoogle Scholar
  12. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  13. Calder WA (1984) Size, function, and life history. Harvard University Press, CambridgeGoogle Scholar
  14. Carnes BA, Olshansky SJ (1997) A biologically motivated partitioning of mortality. Exp Gerontol 32:615–631CrossRefPubMedGoogle Scholar
  15. Cope ED (1904) The primary factors of organic evolution. Open Court, ChicagoCrossRefGoogle Scholar
  16. da Silva JKL, Garcia GJM, Barbosa LA (2006) Allometric scaling laws of metabolism. Phys Life Rev 3:229–261CrossRefGoogle Scholar
  17. Darveau C-A, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170CrossRefPubMedGoogle Scholar
  18. de Magalhães JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22:1770–1774CrossRefPubMedGoogle Scholar
  19. de Magalhães JP, Faragher RGA (2008) Cell divisions and mammalian aging: integrative biology insights from genes that regulate longevity. BioEssays 30:567–578CrossRefPubMedGoogle Scholar
  20. de Magalhães JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 62:149–160CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dingli D, Pacheco JM (2006) Allometric scaling of the active hematopoietic stem cell pool across mammals. PLoS One 1:e2CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dingli D, Pacheco JM (2010) Modeling the architecture and dynamics of hematopoiesis. Wiley Interdiscip Rev Syst Biol Med 2:235–244CrossRefPubMedGoogle Scholar
  23. Dingli D, Traulsen A, Pacheco JM (2008) Dynamics of haemopoiesis across mammals. Proc R Soc Lond B 275:2389–2392CrossRefGoogle Scholar
  24. Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the “3/4-law” of metabolism. J Theor Biol 209:9–27CrossRefPubMedGoogle Scholar
  25. Elias HK, Bryder D, Park CY (2017) Molecular mechanisms underlying lineage bias in aging hematopoiesis. Semin Hematol 54:4–11CrossRefPubMedGoogle Scholar
  26. Evans AR, Jones D, Boyer AG, Brown JH, Costa DP, Ernest SKM, Fitzgerald EMG, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JG, Saarinen JJ, Sibly RM, Smith FA, Stephens PR, Theodor JM, Uhen MD (2012) The maximum rate of mammal evolution. Proc Natl Acad Sci USA 109:4187–4190CrossRefPubMedGoogle Scholar
  27. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia PM, Invidia L, Celani L, Scurti M, Elisa Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105CrossRefPubMedGoogle Scholar
  28. Geiger H, De Haan G, Carolina Florian M (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389CrossRefPubMedGoogle Scholar
  29. Gillooly JF, Hayward A, Hou C, Burleigh JG (2012) Explaining differences in the lifespan and replicative capacity of cells: a general model and comparative analysis of vertebrates. Proc R Soc Lond B 279:3976–3980CrossRefGoogle Scholar
  30. Gordon MY, Lewis JL, Marley SB (2002) Of mice and men… and elephants. Blood 100:4679–4679CrossRefPubMedGoogle Scholar
  31. Ha JC, Robinette RL, Sackett GP (2000) Demographic analysis of the Washington Regional Primate Research Center pigtailed macaque colony, 1967–1996. Am J Primatol 52:187–198CrossRefPubMedGoogle Scholar
  32. Hanna RN, Hedrick CC (2014) Stressing out stem cells: linking stress and hematopoiesis in cardiovascular disease. Nat Med 20:707–708CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hatton IA, McCann KS, Fryxell JM, Davies TJ, Smerlak M, Sinclair AR, Loreau M (2015) The predator–prey power law: biomass scaling across terrestrial and aquatic biomes. Science 349:aac6284CrossRefPubMedGoogle Scholar
  34. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefPubMedGoogle Scholar
  35. Healy K, Guillerme T, Finlay S, Kane A, Kelly SBA, McClean D, Kelly DJ, Donohue I, Jackson AL, Cooper N (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc R Soc Lond B 281:20140298CrossRefGoogle Scholar
  36. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von zur Muhlen C, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758CrossRefPubMedPubMedCentralGoogle Scholar
  37. Henry CJ, Marusyk A, DeGregori J (2011) Aging-associated changes in hematopoiesis and leukemogenesis: what’s the connection? Aging (Albany NY) 3:643–656CrossRefGoogle Scholar
  38. Humphries MM, McCann KS (2014) Metabolic ecology. J Anim Ecol 83:7–19CrossRefPubMedGoogle Scholar
  39. Jagannathan-Bogdan M, Zon LI (2013) Hematopoiesis. Development (Cambridge England) 140:2463–2467CrossRefGoogle Scholar
  40. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238CrossRefPubMedGoogle Scholar
  41. Kleiber M (1947) Body size and metabolic rate. Physiol rev 27:511–541CrossRefPubMedGoogle Scholar
  42. Knight RR, Eberhardt LL (1985) Population dynamics of Yellowstone grizzly bears. Ecology 66:323–334CrossRefGoogle Scholar
  43. Koopman JJE, Wensink MJ, Rozing MP, van Bodegom D, Westendorp RGJ (2015) Intrinsic and extrinsic mortality reunited. Exp Gerontol 67:48–53CrossRefPubMedGoogle Scholar
  44. Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H (2016) Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol 7:502CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee SA (2015) Metabolism of dinosaurs as determined from their growth. Phys Rev E 92:032706CrossRefGoogle Scholar
  46. Li T, Anderson JJ (2009) The vitality model: a way to understand population survival and demographic heterogeneity. Theor Popul Biol 76:118–131CrossRefPubMedGoogle Scholar
  47. Li T, Anderson JJ (2013) Shaping human mortality patterns through intrinsic and extrinsic vitality processes. Demogr Res 28:341–372CrossRefGoogle Scholar
  48. Li T, Anderson JJ (2015) The Strehler–Mildvan correlation from the perspective of a two-process vitality model. Popul Stud (NY) 69:91–104CrossRefGoogle Scholar
  49. Li T, Yang Y, Anderson J (2013) Mortality increase in late-middle and early-old sge: heterogeneity in death processes as a new explanation. Demography 50:1563–1591CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lindstedt SL, Calder WA III (1981) Body size, physiological time, and longevity of homeothermic animals. Q Rev Biol 56:1–16CrossRefGoogle Scholar
  51. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217CrossRefPubMedPubMedCentralGoogle Scholar
  52. Marker LL, Dickman AJ, Jeo RM, Mills MGL, Macdonald DW (2003) Demography of the Namibian cheetah, Acinonyx jubatus jubatus. Biol Conserv 114:413–425CrossRefGoogle Scholar
  53. Monaghan P (2010) Telomeres and life histories: the long and the short of it. Ann N Y Acad Sci 1206:130–142CrossRefPubMedGoogle Scholar
  54. Okie JG, Boyer AG, Brown JH, Costa DP, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Saarinen JJ, Smith FA, Stephens PR, Theodor J, Uhen MD, Sibly RM (2013) Effects of allometry, productivity and lifestyle on rates and limits of body size evolution. Proc R Soc Lond B 280:20131007CrossRefGoogle Scholar
  55. Park CY (2017) Hematopoiesis in aging: current concepts and challenges. Semin Hematol 54:1–3CrossRefPubMedGoogle Scholar
  56. Perelson AS, Wiegel FW (2009) Scaling aspects of lymphocyte trafficking. J Theor Biol 257:9–16CrossRefPubMedGoogle Scholar
  57. Ponnappan S, Ponnappan U (2011) Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal 14:1551–1585CrossRefPubMedPubMedCentralGoogle Scholar
  58. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  59. Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M (2012) Ecological specialization in fossil mammals explains Cope’s rule. Am Nat 179:328–337CrossRefPubMedGoogle Scholar
  60. Rieger MA, Schroeder T (2012) Hematopoiesis. Cold Spring Harb Perspect Biol 4:a008250CrossRefPubMedPubMedCentralGoogle Scholar
  61. Robbins AM, Stoinski T, Fawcett K, Robbins MM (2011) Lifetime reproductive success of female mountain gorillas. Am J Phys Anthropol 146:582–593CrossRefPubMedGoogle Scholar
  62. Rozhok AI, DeGregori J (2016) The evolution of lifespan and age-dependent cancer risk. Trends Cancer 2:552–560CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rozhok AI, Salstrom JL, DeGregori J (2014) Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging 6:1033–1048CrossRefPubMedPubMedCentralGoogle Scholar
  64. Saarinen JJ, Boyer AG, Brown JH, Costa DP, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JG, Sibly RM, Stephens PR, Theodor J, Uhen MD, Smith FA (2014) Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc R Soc Lond B 281:20132049CrossRefGoogle Scholar
  65. Salinger DH, Anderson JJ, Hamel OS (2003) A parameter estimation routine for the vitality-based survival model. Ecol Model 166:287–294CrossRefGoogle Scholar
  66. Segura AM, Fariña RA, Arim M (2016) Exceptional body sizes but typical trophic structure in a Pleistocene food web. Biol Lett 12:20160228CrossRefPubMedPubMedCentralGoogle Scholar
  67. Selman C, McLaren JS, Collins AR, Duthie GG, Speakman JR (2008) The impact of experimentally elevated energy expenditure on oxidative stress and lifespan in the short-tailed field vole Microtus agrestis. Proc R Soc Lond B 275:1907–1916CrossRefGoogle Scholar
  68. Selman C, McLaren JS, Collins AR, Duthie GG, Speakman JR (2013) Deleterious consequences of antioxidant supplementation on lifespan in a wild-derived mammal. Biol Lett 9:20130432CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sharrow DJ, Anderson JJ (2016) Quantifying intrinsic and extrinsic contributions to human longevity: application of a two-process vitality model to the human mortality database. Demography 53:2105–2119CrossRefPubMedPubMedCentralGoogle Scholar
  70. Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JG, Saarinen JJ, Sibly RM, Stephens PR, Theodor J, Uhen MD (2010) The evolution of maximum body size of terrestrial mammals. Science 330:1216–1219CrossRefPubMedGoogle Scholar
  71. Sookias RB, Butler RJ, Benson RBJ (2012) Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proc R Soc Lond B 279:2180–2187CrossRefGoogle Scholar
  72. Steenstrup T, Kark JD, Verhulst S, Thinggaard M, Hjelmborg JVB, Dalgård C, Kyvik KO, Christiansen L, Mangino M, Spector TD, Petersen I, Kimura M, Benetos A, Labat C, Sinnreich R, Hwang S-J, Levy D, Hunt SC, Fitzpatrick AL, Chen W, Berenson GB, Barbieri M, Paolisso G, Gadalla SM, Savage SA, Christensen K, Yashin AI, Arbeev KG, Aviv A (2017) Telomeres and the natural lifespan limit in humans. Aging 9:1130–1142PubMedPubMedCentralGoogle Scholar
  73. Steinsaltz D, Evans SN (2004) Markov mortality models: implications of quasistationarity and varying initial distributions. Theor Popul Biol 65:319–337CrossRefPubMedGoogle Scholar
  74. Sukumar R, Krishnamurthy V, Wemmer C, Rodden M (1997) Demography of captive Asian elephants (Elephas maximus) in southern India. Zoo Biol 16:263–272CrossRefGoogle Scholar
  75. Tung J, Archie EA, Altmann J, Alberts SC (2016) Cumulative early life adversity predicts longevity in wild baboons. Nat Commun 7:11181. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Vágási CI, Vincze O, Pătraş L, Osváth G, Marton A, Bărbos L, Sol D, Pap PL (2016) Large-brained birds suffer less oxidative damage. J Evol Biol 29:1968–1976CrossRefPubMedGoogle Scholar
  77. Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130:46–53CrossRefPubMedGoogle Scholar
  78. Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050CrossRefPubMedGoogle Scholar
  79. Weiss CN, Ito K (2015) DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia. Int J Mol Sci 16:6183–6201CrossRefPubMedPubMedCentralGoogle Scholar
  80. Weitz JS, Fraser HB (2001) Explaining mortality rate plateaus. Proc Natl Acad Sci USA 98:15383–15386CrossRefPubMedGoogle Scholar
  81. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126CrossRefPubMedGoogle Scholar
  82. West GB, Woodruff WH, Brown JH (2002) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci USA 99:2473–2478CrossRefPubMedGoogle Scholar
  83. Whitmore GA (1983) A regression method for censored inverse-Gaussian data. Can J Stat 11:305–315CrossRefGoogle Scholar
  84. Whitmore GA (1986) First-passage-time models for duration data: regression structures and competing risks. Statistician 35:207–219CrossRefGoogle Scholar
  85. Wiegel FW, Perelson AS (2004) Some scaling principles for the immune system. Immunol Cell Biol 82:127–131CrossRefPubMedGoogle Scholar
  86. Woodbury MA, Manton KG (1977) A random-walk model of human mortality and aging. Theor Popul Biol 11:37–48CrossRefPubMedGoogle Scholar
  87. Zimmermann S, Martens UM (2008) Telomeres, senescence, and hematopoietic stem cells. Cell Tissue Res 331:79–90CrossRefPubMedGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations