Abrams PA, Rowe L (1996) The effects of predation on the age and size of maturity of prey. Evolution 50:1052–1061
Article
PubMed
Google Scholar
Audzijonyte A, Kuparinen A (2016) The role of life histories and trophic interactions in population recovery. Cons Biol 30:734–743
Article
Google Scholar
Beckerman AP, Rodgers GM, Dennis SR (2010) The reaction norm of size and age at maturity under multiple predator risk. J Anim Ecol 79:1069–1076
Article
PubMed
Google Scholar
Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478
Article
Google Scholar
Charnov EL (1993) Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, Oxford
Google Scholar
Conover DO, Munch SB (2002) Sustaining fisheries yields over evolutionary time scales. Science 297:94–96
Article
PubMed
CAS
Google Scholar
Darimont CT, Carlson SM, Kinnison MT, Paquet PC, Reimchen TE, Wilmers CC (2009) Human predators outpace other agents of trait change in the wild. Proc Natl Acad Sci USA 106:952–954
Article
PubMed
CAS
Google Scholar
DeLong JP (2012) Experimental demonstration of a ‘rate-size’ trade-off governing body size optimization. Evol Ecol Res 14:343–352
Google Scholar
DeLong JP, Gibert JP (2016) Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics. Ecol Evol 6:935–945
Article
PubMed
PubMed Central
Google Scholar
DeLong JP, Hanley TC (2013) The rate-size trade-off structures intraspecific variation in Daphnia ambigua life history parameters. PLoS One 8:e81024
Article
PubMed
PubMed Central
CAS
Google Scholar
DeLong JP, Walsh MR (2016) The interplay between resource supply and demand determines the influence of predation on prey body size. Can J Fish Aquat Sci 73:709–715
Article
Google Scholar
DeLong JP, Gilbert B, Shurin JB, Savage VM, Barton BT, Clements CF, Dell AI, Greig HS, Harley CDG, Kratina P, McCann KS, Tunney TD, Vasseur DA, O’Connor MI (2015) The body size dependence of trophic cascades. Am Nat 185:354–366
Article
PubMed
Google Scholar
DeLong JP, Forbes VE, Galic N, Gibert JP, Laport RG, Phillips JS, Vavra JM (2016) How fast is fast? Eco-evolutionary dynamics and rates of change in populations and phenotypes. Ecol Evol 6:573–581
Article
PubMed
PubMed Central
Google Scholar
Edeline E, Carlson SM, Stige LC, Winfield IJ, Fletcher JM, James JB, Haugen TO, Vøllestad LA, Stenseth NC (2007) Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. Proc Natl Acad Sci USA 104:15799–15804
Article
PubMed
Google Scholar
Ernande B, Dieckmann U, Heino M (2004) Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc Roy Soc Lond B 271:415–423
Article
Google Scholar
Folkvord A, Jørgensen C, Korsbrekke K, Nash RDM, Nilsen T, Skjæraasen JE (2014) Trade-offs between growth and reproduction in wild Atlantic cod. Can J Fish Aquat Sci 71:1106–1112
Article
Google Scholar
Gibbons JW, Semlitsch RD, Greene JL, Schubauer JP (1981) Variation in age and size at maturity of the slider turtle (Pseudemys scripta). Am Nat 117:841–845
Article
Google Scholar
Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127
Article
Google Scholar
Kozłowski J (1992) Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol Evol 7:15–19
Article
PubMed
Google Scholar
Kozłowski J, Czarnoleski M, Danko M (2004) Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr Comp Biol 44:480–493
Article
PubMed
Google Scholar
Lande R (1977) On comparing coefficients of variation. Syst Zool 26:214–217
Article
Google Scholar
Lewontin RC (1965) Selection for colonizing ability. In: Baker H, Stebbins G (eds) The genetics of colonizing species. Academic, New York, pp 79–94
Google Scholar
Luhring TM, Holdo RM (2015) Trade-offs between growth and maturation: the cost of reproduction for surviving environmental extremes. Oecologia 178:723–732
Article
PubMed
Google Scholar
Perrin N (1995) About Berrigan and Charnov’s life-history puzzle. Oikos 73:137–139
Article
Google Scholar
Phillips BL, Brown GP, Shine R (2010) Life-history evolution in range-shifting populations. Ecology 91:1617–1627
Article
PubMed
Google Scholar
Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil Trans Roy Soc Lond B 364:1629–1640
Article
Google Scholar
Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359
Article
Google Scholar
Riessen HP (1999) Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Can J Fish Aquat Sci 56:2487–2494
Article
Google Scholar
Roff DA (1986) Predicting body size with life history models. Bioscience 36:316–323
Article
Google Scholar
Roff D (1993) Evolution of life histories: Theory and Analysis. Springer, New York
Google Scholar
Rogerson A (1981) The ecological energetics of Amoeba proteus (Protozoa). Hydrobiologia 85:117–128
Article
Google Scholar
Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223
Article
Google Scholar
Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429
Article
PubMed
CAS
Google Scholar
Stearns SC (1992) The evolution of life histories. Oxford University Press, USA
Google Scholar
Stearns SC, Ackermann M, Doebeli M, Kaiser M (2000) Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci USA 97:3309–3313
Article
PubMed
CAS
Google Scholar
Turcotte MM, Reznick DN, Hare JD (2011) The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol Lett 14:1084–1092
Article
PubMed
Google Scholar
von Bertalanffy L (1960) Principles and theory of growth. In: Nowinski WK (ed) Fundamental aspects of normal and malignant growth. Elsevier, New York, pp 137–259
Google Scholar
Walsh MR, Reznick DN (2008) Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proc Natl Acad Sci USA 105:594–599
Article
PubMed
Google Scholar
Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690
Article
Google Scholar
Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159
PubMed
PubMed Central
CAS
Google Scholar
Wright S (1949) The genetical structure of populations. Ann Eugen 15:323–354
Article
Google Scholar
Yaari G, Ben-Zion Y, Shnerb NM, Vasseur DA (2012) Consistent scaling of persistence time in metapopulations. Ecology 93:1214–1227
Article
PubMed
Google Scholar