Population Ecology

, Volume 59, Issue 4, pp 315–328 | Cite as

Larval assemblages of large saproxylic cerambycids in Iberian oak forests: wood quality and host preference shape resource partitioning

  • Luis M. Torres-Vila
  • Carlos Zugasti-Martínez
  • F. Javier Mendiola-Díaz
  • José M. De-Juan-Murillo
  • Álvaro Sánchez-González
  • Yolanda Conejo-Rodríguez
  • Francisco Ponce-Escudero
  • Félix Fernández-Moreno
Original article

Abstract

Oak open woodlands are widespread in southwestern Iberia and present outstanding ecological, biodiversity and socio-economic values. Evergreen species (holm and cork oaks) are prevalent but deciduous oaks may be also locally important. Three large xylophagous cerambycids are associated to these oaks, Cerambyx welensii (Cw), C. cerdo (Cc) and Prinobius myardi (Pm). Like other saproxylic insects, these cerambycids are essential to the nutrient cycle, wood degradation and tree hollow formation, significantly contributing to biodiversity in oak forests. These cerambycids may also potentially colonise healthy living trees and become harmful or pest species. Factors driving their larval ecology are almost unknown, especially in oak forests harbouring mixed populations living in sympatry. Wood samples (n = 500 bolts) from 348 colonised trees were examined during 2011–2016 across the Extremadura region (41,634 km2). Bolts were measured, scored into five wood quality classes, dissected, and all target cerambycids were collected, measured, reared and taxonomically identified. We then determined species-specific prevalence, niche breadth, niche overlap, age structure and population density depending on wood quality, host preference, tree part, wood size, altitude and sun exposure. Wood quality and host preference were major factors segregating interspecific resource partitioning. Cw was prevalent on cork oak decayed wood, and Pm on holm oak degraded wood. Host tree part was involved in Cerambyx larval niche segregation, with Cw prevalent in the fork/branches and Cc in the trunk/base. Pm was never found inhabiting deciduous oaks. Our results may be useful to improve sustainable forest management practices in Iberian oak open woodlands.

Keywords

Cerambyx Ecological succession Niche differentiation Oak decline Prinobius Sympatry 

Notes

Acknowledgements

The authors are grateful to all colleagues from several regional facilities who provided advice and logistic support in either cabinet, laboratory or fieldwork: Rafael López, Jesús Merino, José Manuel Fonseca, Pedro Bueno, Guadalupe Espárrago (SSV-Mérida), José J. Mareque, Ramón Álvarez, Antonio Vázquez, Lorenzo Castro, Fernando Naveiro (SSV-Cáceres), Juande del Pozo (SSV-Badajoz), Antonio J. Romero, Joaquín Cordero, José Fernández (SOGF), Rubén Trenado (SSIA-Mérida), Juan Gragera, Mercedes Paniagua (CICYTEX-La Orden), Isidro Rodríguez (CENSYRA-Badajoz), Paco Barrena, Eva Cruces, Pedro Collado, Paco del Pozo and Laura López (GPEX). We are indebted to the owners of dehesas and oak forests for their kind permission to conduct this study. We also thank Dr Pedro J. Cordero and an anonymous referee for their valuable comments and suggestions. This research was supported by the Servicio de Sanidad Vegetal (SSV, Junta de Extremadura) and benefited from funding of the European Regional Development Fund (ERDF/FEDER) to the GR15112 research group.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10144_2017_592_MOESM1_ESM.pdf (336 kb)
Supplementary material 1 (PDF 336 KB)

References

  1. Agrawal AA, Ackerly DD, Adler FR, Arnold AE, Cáceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schenske D, Stachowicz J, Strauss S, Turner MG, Werner E (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152CrossRefGoogle Scholar
  2. Albert J, Platek M, Cizek L (2012) Vertical stratification and microhabitat selection by the great capricorn beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae) in open-grown, veteran oaks. Eur J Entomol 109:553–559CrossRefGoogle Scholar
  3. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, González P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684CrossRefGoogle Scholar
  4. Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150CrossRefGoogle Scholar
  5. Anbutsu H, Togashi K (1997) Effects of spatio-temporal intervals between newly-hatched larvae on larval survival and development in Monochamus alternatus (Coleoptera: Cerambycidae). Res Popul Ecol 39:181–189CrossRefGoogle Scholar
  6. Barbey A (1915) Biologie du Cerambyx heros Scop. Bulletin de la Société Vaudoise des Sciences Naturelles 50:621–635 (in French) Google Scholar
  7. Baselga A (2008) Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography 31:263–271CrossRefGoogle Scholar
  8. Bense U (1995) Longhorn beetles: illustrated key to the Cerambycidae and Vesperidae of Europe. Margraf Verlag, WeikersheimGoogle Scholar
  9. Berger P (2012) Coléoptères Cerambycidae de la faune de France continentale et de la Corse: actualisation de l’ouvrage d’André Villiers, 1978. Association Roussillonnaise d’Entomologie (ARE), Perpignan (in French) Google Scholar
  10. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286CrossRefGoogle Scholar
  11. Buse J, Schröder B, Assmann T (2007) Modelling habitat and spatial distribution of an endangered longhorn beetle—a case study for saproxylic insect conservation. Biol Conserv 137:372–381CrossRefGoogle Scholar
  12. Buse J, Ranius T, Assmann T (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conserv Biol 22:329–337CrossRefPubMedGoogle Scholar
  13. Carrasco A (ed) (2009) Procesos de decaimiento forestal (la Seca): situación del conocimiento. Consejería de Medio Ambiente, Junta de Andalucía, Córdoba (in Spanish) Google Scholar
  14. CE [Council of Europe] (1979) The Bern Convention (19 September 1979) on the conservation of European wildlife and natural habitats, Document 104. Council of Europe, StrasbourgGoogle Scholar
  15. CEC (Council of the European Communities) (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (habitats directive). Off J Eur Communities 35:7–50Google Scholar
  16. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366CrossRefGoogle Scholar
  17. CNIG-IGN (2016) MDT05: Modelo digital del terreno con paso de malla 5 m (SRG: ETRS89). Centro Nacional de Información Geográfica, Instituto Geográfico Nacional. https://www.ign.es/ign/layoutIn/modeloDigitalTerreno.do. CNIG-IGN (in Spanish) Accessed 14 Feb 2017
  18. Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:362–366CrossRefPubMedGoogle Scholar
  19. Davies ZG, Tyler C, Stewart GB, Pullin AS (2008) Are current management recommendations for saproxylic invertebrates effective? A systematic review. Biodivers Conserv 17:209–234CrossRefGoogle Scholar
  20. Duffy EAJ (1953) A monograph of the immature stages of British and imported timber beetles (Cerambycidae). Jarrold and Sons Ltd, NorwichGoogle Scholar
  21. Dupont P, Zagatti P (2005) Cerambyx cerdo Linné, 1758. http://www7.inra.fr/opie-insectes/observatoire/coleos/cerambyx/c_cerdo.htm. INRA (in French) Accessed 14 Feb 2017
  22. EC (European Commission) (2007) Wildlife and sustainable farming initiative. Species report—Cerambyx cerdo. European Commission-DG ENV, BruxellesGoogle Scholar
  23. El Antry S (1999) Biologie et dégâts de Cerambyx cerdo mirbecki Lucas (Coléoptere, Cerambycidae) en subéraie de la Mamora. IOBC/WPRS Bulletin 22:59–64 (in French with English abstract) Google Scholar
  24. Evans HF, Moraal LG, Pajares JA (2004) Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 447–474CrossRefGoogle Scholar
  25. García-Villanueva V, Moreno-Tamurejo JA, Novoa-Pérez JM, Nieto-Manzano MA (2007) La familia Cerambycidae Latreille, 1804 (Coleoptera) en Extremadura (España). Boletín de la Sociedad Entomológica Aragonesa 40:409–418 (in Spanish with English abstract) Google Scholar
  26. González-Peña CF, Vives-Noguera E, de Sousa-Zuzarte AJ (2007) Nuevo catálogo de los Cerambycidae (Coleoptera) de la Península Ibérica, islas Baleares e islas atlánticas: Canarias, Açores y Madeira,vol 12. Monografías SEA—Sociedad Entomológica Aragonesa, Zaragoza (in Spanish with English abstract) Google Scholar
  27. Grove SJ (2002) Saproxylic insect ecology and the sustainable management of forests. Annu Rev Ecol Syst 33:1–23CrossRefGoogle Scholar
  28. Grove SJ, Forster L (2011) A decade of change in the saproxylic beetle fauna of eucalypt logs in the Warra long-term log-decay experiment, Tasmania. 2. Log-size effects, succession, and the functional significance of rare species. Biodivers Conserv 20:2167–2188CrossRefGoogle Scholar
  29. Hanks LM (1999) Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu Rev Entomol 44:483–505CrossRefPubMedGoogle Scholar
  30. Hanks LM, Paine TD, Millar JG (1993) Host species preference and larval performance in the wood-boring beetle Phoracantha semipunctata F. Oecologia 95:22–29CrossRefPubMedGoogle Scholar
  31. Hanks LM, Paine TD, Millar JG (2005) Influence of the larval environment on performance and adult body size of the wood-boring beetle Phoracantha semipunctata. Entomol Exp Appl 114:25–34CrossRefGoogle Scholar
  32. IUCN (International Union for Conservation of Nature) (2010) Cerambyx cerdo. The IUCN red list of threatened species 2010: e.T4166A10502932. http://www.iucnredlist.org/details/4166/1. IUCN. Accessed 14 Feb 2017
  33. Iwata R, Maro T, Yonezawa Y, Yahagi T, Fujikawa Y (2007) Period of adult activity and response to wood moisture content as major segregating factors in the coexistence of two conifer longhorn beetles., Callidiellum rufipenne and Semanotus bifasciatus (Coleoptera: Cerambycidae). Eur J Entomol 104:341–346CrossRefGoogle Scholar
  34. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  35. Kolström M, Lumatjärvi J (2000) Saproxylic beetles on aspen in commercial forests: a simulation approach to species richness. For Ecol Manage 126:113–120CrossRefGoogle Scholar
  36. Krebs CJ (1999) Ecological methodology, 2nd edn. Addison Wesley Longman, Menlo ParkGoogle Scholar
  37. Lawlor LR (1980) Overlap, similarity, and competition coefficients. Ecology 61:245–251CrossRefGoogle Scholar
  38. Linsley EG (1959) Ecology of Cerambycidae. Annu Rev Entomol 4:99–138CrossRefGoogle Scholar
  39. López-Pantoja G, Domínguez L, Sánchez-Osorio I (2008) Mark-recapture estimates of the survival and recapture rates of Cerambyx welensii Küster (Coleoptera, Cerambycidae) in a cork oak dehesa in Huelva (Spain). Cent Eur J Biol 3:431–441Google Scholar
  40. López-Pantoja G, Domínguez L, Sánchez-Osorio I (2011) Analysis of Prinobius myardi Mulsant population dynamics in a Mediterranean cork oak stand. Ann Soc Entomol Fr (NS) 47:260–268CrossRefGoogle Scholar
  41. López-Pantoja G, Domínguez L, Sánchez-Osorio I (2016) A procedure for calculating the thermal constants associated with the flight period of Cerambyx welensii Küster and Prinobius myardi Mulsant from field observations. Agric For Entomol 18:82–90CrossRefGoogle Scholar
  42. Marcuzzi G (1979) European ecosystems. W. Junk, The HagueCrossRefGoogle Scholar
  43. Martín J, Cabezas J, Buyolo T, Patón D (2005) The relationship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forests. For Ecol Manage 216:166–174CrossRefGoogle Scholar
  44. Martínez-García Á (2014) Los Prioninae Latreille, 1802 (Coleoptera, Cerambycidae) de la provincia de Málaga (sur de España). Boletín de la Sociedad Andaluza de Entomología 23:15–27 (in Spanish with English abstract) Google Scholar
  45. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093CrossRefPubMedGoogle Scholar
  46. Medail F, Quezel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  47. Micó E, García-López A, Sánchez A, Juárez M, Galante E (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? J Insect Conserv 19:141–153CrossRefGoogle Scholar
  48. Montero G, San Miguel A, Cañellas I (1998) Sistemas de silvicultura mediterránea. La dehesa. In: Jiménez-Díaz RM, Lamo-De-Espinosa J (eds) Agricultura sostenible. Life and Mundi-Prensa, Madrid, pp 519–554 (in Spanish) Google Scholar
  49. Morales-Rodríguez C, Sánchez-González Á, Conejo-Rodríguez Y, Torres-Vila LM (2015) First record of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Clavicipitaceae) infecting Cerambyx welensii (Coleoptera: Cerambycidae) and pathogenicity tests using a new bioassay method. Biocontrol Sci Techn 25:1213–1219CrossRefGoogle Scholar
  50. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefPubMedGoogle Scholar
  51. Naveiro F, Morcuende A (1994) Observaciones sobre los cerambícidos de las quercíneas en la provincia de Cáceces. Phytoma-España 60:49–52 (in Spanish) Google Scholar
  52. Picard F (1929) Coléoptères: Cerambycidae. Faune de France 20. P. Lechevalier, Paris (in French) Google Scholar
  53. Ramírez-Hernández A, Micó E, Marcos-García MA, Brustel H, Galante E (2014) The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodivers Conserv 23:2069–2087CrossRefGoogle Scholar
  54. Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94CrossRefGoogle Scholar
  55. Reagel PF, Smith MT, Hanks LM (2012) Effects of larval host diameter on body size, adult density, and parasitism of cerambycid beetles. Can Entomol 144:435–438CrossRefGoogle Scholar
  56. Reeves JL (2011) Vision should not be overlooked as an important sensory modality for finding host plants. Environ Entomol 40:855–863CrossRefPubMedGoogle Scholar
  57. Regnery B, Paillet Y, Couvet D, Kerbiriou C (2013) Which factors influence the occurrence and density of tree microhabitats in Mediterranean oak forests? For Ecol Manage 295:118–125CrossRefGoogle Scholar
  58. Saint-Germain M, Drapeau P, Buddle CM (2007) Host-use patterns of saproxylic phloeophagous and xylophagous Coleoptera adults and larvae along the decay gradient in standing dead black spruce and aspen. Ecography 30:737–748CrossRefGoogle Scholar
  59. Sallé A, Nageleisen LM, Lieutier F (2014) Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. For Ecol Manage 328:79–93CrossRefGoogle Scholar
  60. Sama G (2013) Fauna Europaea: Cerambycidae. In: Audisio P (ed) Fauna Europaea: Coleoptera 2. Fauna Europaea version 2.6. http://www.fauna-eu.org/. Accessed 14 Feb 2017
  61. Sama G, Schurmann P (1980) Coleotteri cerambicidi di Sicilia. Animalia 7:189–230 (in Italian with English abstract) Google Scholar
  62. Sama G, Buse J, Orbach E, Friedman ALL, Rittner O, Chikatunov V (2010) A new catalogue of the Cerambycidae (Coleoptera) of Israel with notes on their distribution and host plants. Munis Entomol Zool 5:1–51Google Scholar
  63. Sánchez-Osorio I, Domínguez L, López-Pantoja G, Tapias R (2015) Antennal response of Prinobius myardi to synthetic tree volatiles. Silva Fenn artic 1305(3):8Google Scholar
  64. Sánchez-Osorio I, López-Pantoja G, Paramio AM, Lencina JL, Gallego D, Domínguez L (2016) Field attraction of Cerambyx welensii to fermentation odors and host monoterpenes. J Pest Sci 89:59–68CrossRefGoogle Scholar
  65. Satoh T, Yoshida T, Koyama S, Yamagami A, Takata M, Doi H, Kurachi T, Hayashi S, Hirobe T, Hata Y (2016) Resource partitioning based on body size contributes to the species diversity of wood-boring beetles and arboreal nesting ants. Insect Conserv Divers 9:4–12CrossRefGoogle Scholar
  66. Scherrer B (1984) Biostatistique. Gaëtan Morin, Québec (in French) Google Scholar
  67. Schoener TW (1974) Resource partitioning in ecological communities. Science 185(4145):27–39CrossRefPubMedGoogle Scholar
  68. Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Co, New YorkGoogle Scholar
  69. Speight MCD (1989) Saproxylic invertebrates and their conservation. Nature and Environment Series 46. Council of Europe, StrasbourgGoogle Scholar
  70. Švácha P, Danilevsky ML (1987) Cerambycoid larvae of Europe and Soviet Union (Coleoptera, Cerambycoidea) part I. Acta Universitatis Carolinae-Biologica 30(1986):1–176Google Scholar
  71. Švácha P, Danilevsky ML (1988) Cerambycoid larvae of Europe and Soviet Union (Coleoptera, Cerambycoidea) part II. Acta Universitatis Carolinae-Biologica 31(1987):121–284Google Scholar
  72. Systat (2000) Systat 10.0 the system for statistics. Systat Software Inc, RichmondGoogle Scholar
  73. Torres-Vila LM (2017) Reproductive biology of the great capricorn beetle, Cerambyx cerdo (Coleoptera: Cerambycidae): a protected but occasionally harmful species. Bull Entomol Res. doi: 10.1017/S0007485317000323 PubMedGoogle Scholar
  74. Torres-Vila LM, Sánchez-González Á, Ponce-Escudero F, Martín-Vertedor D, Ferrero-García JJ (2012) Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. Eur J For Res 131:1103–1116CrossRefGoogle Scholar
  75. Torres-Vila LM, Sánchez-González Á, Merino-Martínez J, Ponce-Escudero F, Conejo-Rodríguez Y, Martín-Vertedor D, Ferrero-García JJ (2013) Mark-recapture of Cerambyx welensii in dehesa woodlands: dispersal behaviour, population density, and mass trapping efficiency with low trap densities. Entomol Exp Appl 149:273–281CrossRefGoogle Scholar
  76. Torres-Vila LM, Mendiola-Díaz FJ, Conejo-Rodríguez Y, Sánchez-González Á (2016) Reproductive traits and number of matings in males and females of Cerambyx welensii (Coleoptera: Cerambycidae) an emergent pest of oaks. Bull Entomol Res 106:292–303CrossRefPubMedGoogle Scholar
  77. Torres-Vila LM, Mendiola-Díaz FJ, Sánchez-González Á (2017) Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark–recapture comparative study. Ecol Entomol 42:18–32CrossRefGoogle Scholar
  78. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85CrossRefPubMedGoogle Scholar
  79. Verdugo A (2004) Los cerambícidos (Coleoptera, Cerambycidae) de Andalucía. Sociedad Andaluza de Entomología, Córdoba (in Spanish with English abstract) Google Scholar
  80. Victorsson J, Wikars L (1996) Sound production and cannibalism in larvae of the pine-sawyer beetle Monochamus sutor L. (Coleoptera: Cerambycidae). Entomologisk Tidskrift 117:29–33Google Scholar
  81. Villiers A (1946) Coléoptères cérambycides de l’Afrique du Nord. Faune de l’Empire Français 5. ORSC, Paris (in French) Google Scholar
  82. Vives E (2000) Coleoptera Cerambycidae. Fauna ibérica vol 12. Museo Nacional de Ciencias Naturales (CSIC), Madrid (in Spanish) Google Scholar
  83. Vodka S, Konvicka M, Cizek L (2009) Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management. J Insect Conserv 13:553–562CrossRefGoogle Scholar
  84. Warrant E, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254CrossRefPubMedGoogle Scholar
  85. Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:256–268CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer Japan KK 2017

Authors and Affiliations

  • Luis M. Torres-Vila
    • 1
  • Carlos Zugasti-Martínez
    • 2
  • F. Javier Mendiola-Díaz
    • 1
  • José M. De-Juan-Murillo
    • 2
  • Álvaro Sánchez-González
    • 1
  • Yolanda Conejo-Rodríguez
    • 1
  • Francisco Ponce-Escudero
    • 1
  • Félix Fernández-Moreno
    • 1
  1. 1.Servicio de Sanidad VegetalConsejería de Medio Ambiente y Rural PAyTMéridaSpain
  2. 2.Servicio de Sanidad VegetalConsejería de Medio Ambiente y Rural PAyTCáceresSpain

Personalised recommendations