Skip to main content
Log in

The use of faeces counts to estimate relative densities of wild boar in a Mediterranean area

  • Notes and Comments
  • Published:
Population Ecology

Abstract

The monitoring of population trends of wild ungulates is important to evaluate their population dynamics and to develop sound conservation/management plans. The wild boar Sus scrofa can impose heavy impacts on ecosytems and human activities, as well as be responsible for disease transmission. Estimating abundance of wild boars is a challenging issue, because of some peculiar biological and ecological traits of this ungulate. Indices of relative abundance could be used to evaluate its population trends. In a Mediterranean area we used faeces counts, through a two-stage stratified sampling, to estimate relative densities of wild boars, between 2007 and 2014. Faeces density estimates increased not significantly between 2007 (151.5 faeces/100 ha) and 2010 (203.8 faeces/100 ha) and decreased significantly from 2010 to 2014 (95.5 faeces/100 ha). The decrease in faeces density estimates was consistent with the increased harvest effort (number of harvest days), performed from 2010 to 2013 to limit impact on ecosystems and reduce damages to crops. The variation of faeces density estimates was also consistent with that of harvest indices (total harvest to harvest effort), with significantly positive values of Pearson and rank correlation coefficients. Results suggest that faeces density estimates achieved with the adopted sampling strategies can be effectively used as indices of relative abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aarnink AJA, Schrama JW, Heetkamp MJW, Stefanowska J, Huynh TTT (2006) Temperature and body weight affect fouling of pig pens. J Anim Sci 84:2224–2231

    Article  CAS  PubMed  Google Scholar 

  • Acevedo P, Escudero MA, Muńoz R, Gortázar C (2006) Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriol 51:327–336

    Article  Google Scholar 

  • Acevedo P, Vicente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortázar C (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DR (2003) Response to Engeman: index values rarely constitute reliable information. Wildl Soc Bull 31:288–291

    Google Scholar 

  • Ballesteros C, Vicente J, Carrasco-García R, Mateo R, de la Fuente J, Gortázar C (2011) Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. Eur J Wildl Res 57:749–757

    Article  Google Scholar 

  • Barrios-Garcia MN, Ballari S (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14:2283–2300

    Article  Google Scholar 

  • Beltrán-Beck B, Ballesteros C, Vicente J, de la Fuente J, Gortázar C (2012) Progress in oral vaccination against tuberculosis in its main wildlife reservoir in Iberia, the Eurasian wild boar. Vet Med Int 2012, Article ID 978501. doi:10.1155/2012/978501

  • Briedermann L (1986) Schwartzwild. VEB Deutscher Landwirtschaftsverlag, Berlin (in German)

    Google Scholar 

  • Campbell D, Swanson GM, Sales J (2004) Comparing the precision and cost-effectiveness of faecal pellet group count methods. J Appl Ecol 41:1185–1196

    Article  Google Scholar 

  • Caniglia R, Fabbri E, Greco C, Galaverni M, Manghi L, Boitani L, Sforzi A, Randi E (2013) Black coats in an admixed wolf × dog pack is melanism an indicator of hybridization in wolves? Eur J Wildl Res 59:543–555

    Article  Google Scholar 

  • Caughley G (1977) Analysis of vertebrate populations. Wiley, London

    Google Scholar 

  • Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ebert C, Huckschlag D, Schulz HK, Hohmann U (2010) Can hair traps sample wild boar (Sus scrofa) randomly for the purpose of noninvasive population estimation? Eur J Wildl Res 56:583–590

    Article  Google Scholar 

  • Engeman RM (2003) More on the need to get the basics right: population indices. Wildl Soc Bull 31:286–287

    Google Scholar 

  • Engeman RM (2005) Indexing principles and a widely applicable paradigm for indexing animal populations. Wildl Res 32:203–210

    Article  Google Scholar 

  • Engeman RM, Massei G, Sage M, Gentle MN (2013) Monitoring wild pig populations: a review of methods. Environ Sci Pollut Res 20:8077–8091

    Article  CAS  Google Scholar 

  • Fattorini L (2006) Applying the Horvitz-Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika 93:269–278

    Article  Google Scholar 

  • Fattorini L, Pisani C (2004) Variance decomposition in two-stage plot sampling: theoretical and empirical results. Environ Ecol Stat 11:385–396

    Article  Google Scholar 

  • Fattorini L, Ferretti F, Pisani C, Sforzi A (2011) Two-stage estimation of ungulate abundance in Mediterranean areas using pellet group count. Environ Ecol Stat 18:291–314

    Article  Google Scholar 

  • Ferretti F, Bertoldi G, Sforzi A, Fattorini L (2011) Roe and fallow deer: are they compatible neighbours? Eur J Wildl Res 57:775–783

    Article  Google Scholar 

  • Ferretti F, Sforzi A, Coats J, Massei G (2014) The BOS™ as a species-specific method to deliver baits to wild boar in a Mediterranean area. Eur J Wildl Res 60:555–558

    Article  Google Scholar 

  • Ferretti F, Storer K, Coats J, Massei G (2015) Temporal and spatial patterns of defecation in wild boar. Wildl Soc Bull 39:65–69

    Article  Google Scholar 

  • Franzetti B, Ronchi F, Marini F, Scacco M, Calmanti R, Calabrese A, Aragno P, Montanaro P, Focardi S (2012) Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. Eur J Wildl Res 58:385–402

    Article  Google Scholar 

  • Grafström A, Tillé Y (2013) Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 24:120–131

    Article  Google Scholar 

  • Gregoire TG, Valentine HT (2008) Sampling strategies for natural resources and the environment. Chapman & Hall, New York

    Google Scholar 

  • Hone J (1995) Spatial and temporal aspect of vertebrate pest damage with emphasis on feral pigs. J Appl Ecol 32:311–319

    Article  Google Scholar 

  • Hone J (2012) Applied population and community ecology. Wiley-Blackwell, London

    Book  Google Scholar 

  • Hone J, Martin W (1998) A study of dung decay and plot size for surveying feral pigs using dung counts. Wildl Res 25:255–260

    Article  Google Scholar 

  • Keuling O, Lauterbach K, Stier N, Roth M (2010) Hunter feedback of individually marked wild boar Sus scrofa L.: dispersal and efficiency of hunting in northeastern Germany. Eur J Wildl Res 56:159–167

    Article  Google Scholar 

  • Krebs CJ (1998) Ecological methodology, 2nd edn. Addison Wesley Longman, USA

    Google Scholar 

  • Lapidge S, Wishart J, Staples L, Fagerstone K, Campbell T, Eisemann J (2012) Development of a feral swine toxic bait (Hog-Gone®) and bait hopper (Hog-Hopper™) in Australia and the USA. Proc Wildl Damage Manag Conf 14:19–24

    Google Scholar 

  • Massei G, Genov P (2004) The environmental impact of wild boar. Galemys 16:135–145

    Google Scholar 

  • Massei G, Bacon P, Genov P (1998) Fallow deer and wild boar pellet group disappearance in a Mediterranean area. J Wildl Manag 62:1086–1094

    Article  Google Scholar 

  • Massei G, Coats J, Quy R, Storer K, Cowan DP (2010) The BOS (Boar-Operated-System): a novel method to deliver baits to wild boar. J Wildl Manag 74:333–336

    Article  Google Scholar 

  • Massei G, Roy S, Bunting R (2011) Too many hogs? A review of methods to mitigate impact by wild boar and feral pigs. Human Wildl Interact 5:79–99

    Google Scholar 

  • Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J, Baubet E, Hohmann U, Monaco A, Ozoliņš J, Cellina S, Podgórski T, Fnseca C, Markov N, Pokorny B, Rosell C, Náhlik A (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71:492–500

    Article  CAS  PubMed  Google Scholar 

  • Mayle BA, Peace AJ, Gill RMA (1999) How many deer? A field guide to estimating deer population size. Forestry Commission, Edinburgh

    Google Scholar 

  • Mencagli M, Stefanini P (2008) Carta della vegetazione per il Piano del Parco. Alberese, Italy (in Italian)

    Google Scholar 

  • Minder I (2006) Adaptive parameters of the diet of roe deer in a coastal Mediterranean area, Ph.D. thesis. University of Siena, Siena

    Google Scholar 

  • Morellet N, Gaillard JM, Hewison AJM, Ballon P, Boscardin Y, Duncan P, Klein F, Maillard D (2007) Indicators of ecological change: new tools for managing populations of large herbivores. J Appl Ecol 44:634–643

    Article  Google Scholar 

  • Neff DJ (1968) The pellet group count technique for big game trend, census and distribution: a review. J Wildl Manag 32:597–614

    Article  Google Scholar 

  • Nichols JD, Runge MC, Johnson FA, Williams BK (2007) Adaptive harvest management of North American waterfowl populations: a brief history and future prospects. J Ornithol 148:343–349

    Article  Google Scholar 

  • Plhal R, Kamler J, Homolka M, Drimaj J (2014) An assessment of the applicability of dung count to estimate the wild boar population density in a forest environment. J Forest Sci 60:174–180

    Google Scholar 

  • Putman RJ (1984) Facts from faeces. Mamm Rev 14:79–97

    Article  Google Scholar 

  • Rogers LL (1987) Seasonal changes in defecation rates of free-ranging white-tailed deer. J Wildl Manag 51:330–333

    Article  Google Scholar 

  • Ruiz-Fons F, Segalés J, Gortázar C (2008) A review of viral diseases of the European wild boar: effects of population dynamics and reservoir role. Vet J 176:158–169

    Article  PubMed  Google Scholar 

  • Sforzi A, Ferretti F, Machetti A, Boldorini U, Tonini L (2014) Programma annuale per la gestione degli Ungulati selvatici del Parco Regionale della Maremma. Unpublished report. Ente Parco Regionale della Maremma, Alberese (in Italian)

    Google Scholar 

  • Skalski JR (1994) Estimating wildlife population based on incomplete area surveys. Wildl Soc Bull 22:192–203

    Google Scholar 

  • Smith AD (1964) Defecation rates of mule deer. J Wildl Manag 28:437–444

    Article  Google Scholar 

  • Vicente J, Segalés J, Höfle U, Balasch M, Plana-Durán J, Domingo M, Gortázar C (2004) Epidemiological study on porcine circovirus type (PCV2) infection in the European wild boar (Sus scrofa). Vet Res 35:243–253

    Article  PubMed  Google Scholar 

  • White PJ, Garrott RA (2005) Yellowstone’s ungulates after wolves—expectations, realizations, and predictions. Biol Conserv 125:141–152

    Article  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Maremma Regional Park Agency for financial support and for allowing us to conduct our work; Ente Terre Regionali Toscane and many landowners for permission to conduct field work on their lands. We are indebted to the MRP staff for logistic support and to wardens P. Arrigucci, F. Fini, D. Germani, A. Gianni and especially U. Boldorini and L. Tonini for data on wild boar culling; to S. Lovari, for comments to an earlier draft, as well as for encouragement and support to FF throughout the study; to I. Pecorella and other helpers/volunteers, who helped with field work; and to two anonymous reviewers, for improving a previous draft of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ferretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, F., Fattorini, L., Sforzi, A. et al. The use of faeces counts to estimate relative densities of wild boar in a Mediterranean area. Popul Ecol 58, 329–334 (2016). https://doi.org/10.1007/s10144-016-0536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-016-0536-3

Keywords

Navigation