Spatial capture–recapture models allowing Markovian transience or dispersal

Abstract

Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    This compares to estimates of home range size derived from telemetry at a different site in New York (over a longer time period) of 155–253 km\(^2\) for males and 36 km\(^2\) for females.

References

  1. Arnason AN (1973) The estimation of population size, migration rates and survival in a stratified population. Res Popul Ecol 15:1–8

    Article  Google Scholar 

  2. Belda EJ, Barba E, Monros JS (2007) Resident and transient dynamics, site fidelity and survival in wintering Blackcaps Sylvia atricapilla: evidence from capture–recapture analyses. Ibis 149:396–404

    Article  Google Scholar 

  3. Borchers DL (2012) A non-technical overview of spatially explicit capture–recapture models. J Ornithol 152:435–444

    Article  Google Scholar 

  4. Borchers DL, Efford MG (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64:377–385

    PubMed  CAS  Article  Google Scholar 

  5. Borchers DL, Distiller G, Foster R, Harmsen B, Milazzo L (2014) Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol Evol 5:656–665

    Article  Google Scholar 

  6. Borger L, Dalziel BD, Fryxell JM (2008) Are there general mechanisms of animal home range behavior? A review and prospects for future research. Ecol Lett 11:637–650

    PubMed  Article  Google Scholar 

  7. Brooks S, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  8. Caro TM (1994) Cheetahs of the Serengeti Plains: group living of an asocial species. University of Chicago press, Chicago

    Google Scholar 

  9. Chandler RB, Royle JA (2013) Spatially explicit models for inference about density in unmarked or partially marked populations. Ann Appl Stat 7:936–954

    Article  Google Scholar 

  10. Chandler RB, Clark JD (2014) Spatially explicit integrated population models. Methods Ecol Evol 5:1351–1360

    Article  Google Scholar 

  11. Clobert J, Baguette M, Benton TG, Bullock JM, Ducatez S (eds) (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

  12. Constantine R, Jackson JA, Steel D, Baker CS, Brooks L, Burns D, Clapham P, Hauser N, Madon B, Mattila D, Oremus M, Poole M, Robbins J, Thompson K, Garrigue C (2012) Abundance of humpback whales in Oceania using photo-identification and microsatellite genotyping. Mar Ecol Prog Ser 453:249–261

    Article  Google Scholar 

  13. Efford M (2004) Density estimation in live-trapping studies. Oikos 106:598–610

    Article  Google Scholar 

  14. Efford MG, Dawson DK, Borchers DL (2009) Population density estimated from locations of individuals on a passive detector array. Ecology 90:2676–2682

    PubMed  Article  Google Scholar 

  15. Ergon T, Gardner B (2014) Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol Evol 5:1327–1336

    Article  Google Scholar 

  16. Fuller AK, Harrison DJ (2005) Influence of partial timber harvesting on American martens in north-central Maine. J Wildl Manag 69:710–722

    Article  Google Scholar 

  17. Fuller AK, Harrison DJ, Vashon JH (2007) Winter habitat selection by Canada lynx in Maine: prey abundance or accessibility? J Wildl Manag 71:1980–1986

    Article  Google Scholar 

  18. Fuller AK, Sutherland CS, Royle JA, Hare MP (2015) Estimating population density and connectivity of American mink using spatial capture–recapture. Ecol Apps. doi:10.1890/15-0315.1

  19. Gardner B, Royle JA, Wegan MT, Rainbolt RE, Curtis PD (2010) Estimating black bear density using DNA data from hair snares. J Wildl Manag 74:318–325

    Article  Google Scholar 

  20. Gehrt SD, Anchor C, White LA (2009) Home range and landscape use of coyotes in a metropolitan landscape: conflict or coexistence? J Mammal 90:1045–1057

    Article  Google Scholar 

  21. Hestbeck JB, Nichols JD, Malecki RA (1991) Estimates of movement and site fidelity using mark-resight data of wintering Canada geese. Ecology 72:523–533

    Article  Google Scholar 

  22. Hines JE, Kendall WL, Nichols JD (2003) On the use of the robust design with transient capture–recapture models. The Auk 120:1151–1158

    Article  Google Scholar 

  23. Kéry M, Schaub M (2012) Bayesian population analysis using WinBUGS–a hierarchical perspective. Academic Press, London

    Google Scholar 

  24. Moorcroft PR, Lewis MA, Crabtree RL (2006) Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proc R Soc B Biol Sci 273(1594):1651–1659

    Article  Google Scholar 

  25. Perret N, Pradel R, Miaud C, Grolet O, Joly P (2003) Transience, dispersal and survival rates in newt patchy populations. J Anim Ecol 72:567–575

    Article  Google Scholar 

  26. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing, vol 124, p 125, Vienna

  27. Pradel R, Hines JE, Lebreton JD, Nichols JD (1997) Capture–recapture survival models taking account of transients. Biometrics 53:60–72

    Article  Google Scholar 

  28. Rohner C (1997) Non-territorial ‘floaters’ in great horned owls: space use during a cyclic peak of snowshoe hares. Anim Behav 53:901–912

    Article  Google Scholar 

  29. Royle JA, Young KV (2008) A hierarchical model for spatial capture–recapture data. Ecology 89:2281–2289

    PubMed  Article  Google Scholar 

  30. Royle JA, Dorazio RM, Link WA (2007) Analysis of multinomial models with unknown index using data augmentation. J Comput Graph Stat 16:67–85

    Article  Google Scholar 

  31. Royle JA, Chandler RB, Sun CC, Fuller AK (2013a) Integrating resource selection information with spatial capture–recapture. Methods Ecol Evol 4:520–530

    Article  Google Scholar 

  32. Royle JA, Chandler RB, Gazenski KD, Graves TA (2013b) Spatial capture–recapture models for jointly estimating population density and landscape connectivity. Ecology 94:287–294

    PubMed  Article  Google Scholar 

  33. Royle JA, Chandler RB, Sollmann R, Gardner B (2014) Spatial capture–recapture. Academic Press, London

    Google Scholar 

  34. Royle JA, Sutherland C, Fuller AK, Sun CC (2015) Likelihood analysis of spatial capture–recapture models for stratified or class structured populations. Ecosphere 6:art22

  35. Saracco JF, Royle JA, DeSante DF, Gardner B (2010) Modeling spatial variation in avian survival and residency probabilities. Ecology 91:1885–1891

    PubMed  Article  Google Scholar 

  36. Sasso CR, Braun-McNeill J, Avens L, Epperly SP (2006) Effects of transients on estimating survival and population growth in juvenile loggerhead turtles. Mar Ecol Prog Ser 324:287–292

    Article  Google Scholar 

  37. Schaub M, Royle JA (2014) Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol Evol 5:1316–1326

    Article  Google Scholar 

  38. Sollmann R, Gardner B, Parsons AW, Stocking JJ, McClintock BT, Simons TR, Pollock KH, O’Connell AF (2013) A spatial mark-resight model augmented with telemetry data. Ecology 94:553–559

    PubMed  Article  Google Scholar 

  39. Sutherland C, Elston DA, Lambin X (2013) Accounting for false positive detection error induced by transient individuals. Wildl Res 40:490–498

    Article  Google Scholar 

  40. Sutherland C, Fuller AK, Royle JA (2015) Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks. Methods Ecol Evol 6:169–177

    Article  Google Scholar 

  41. Tufto J, Lande R, Rignsby TH, Engen S, Saether BE, Walla TR, DeVries PJ (2012) Estimating Brownian motion dispersal rate, longevity and population density from spatially explicit mark-recapture data on tropical butterflies. J Anim Ecol 81:756–769

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

Preliminary results of this research were presented by the authors at the 2014 Graybill/ENVR Conference: Modern Statistical Methods for Ecology, held September 7–10, 2014 at Colorado State University, Fort Collins, Colorado. We thank Michael Schaub and 2 anonymous referees for their thoughtful reviews of the manuscript. Part of this research was performed using the ATLAS HPC Cluster, a compute cluster with 672 cores, 4 Tesla M2090 GPU accelerators, supported by NSF grants (Award # 1059284 and 0832782).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Royle.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Royle, J.A., Fuller, A.K. & Sutherland, C. Spatial capture–recapture models allowing Markovian transience or dispersal. Popul Ecol 58, 53–62 (2016). https://doi.org/10.1007/s10144-015-0524-z

Download citation

Keywords

  • Animal movement
  • Density estimation
  • Dispersal
  • Spatial capture–recapture
  • Spatially explicit capture–recapture
  • Transience