Population Ecology

, Volume 58, Issue 1, pp 165–178 | Cite as

Land use heterogeneity causes variation in demographic viability of a bioindicator of species-richness in protected fen grasslands

  • Tristan LemkeEmail author
  • Roberto Salguero-Gómez
Original article


Land use change is one of the main drivers of species extinction. In Europe, grasslands are under active conflict between conservation efforts and increasing agricultural pressures. Here, we examine the demographic effects of differential land use on the herbaceous perennial Trollius europaeus L. (Ranunculaceae), a bioindicator of species-richness and ecosystem services in wet grasslands of Central Europe. Demographic data were collected in 2006–2009 from nine populations in seven protected sites of northeastern Germany representing four land use types. We constructed stage-based matrix population models to explore the effects of various land management on demographic viability of focal populations. We show that most studied populations are declining (λ < 1), although the estimates of local extinction vary between ≤15 years for grazed and woodland populations, and 20–99 years for mown and abandoned populations. The joint information from our elasticity analyses and life table response experiments revealed that reproduction, growth of small vegetative individuals and survival of reproductive stages are most important for population viability. Our study shows that the current land uses in protected areas where T. europaeus is found is incompatible with its long-term viability. We suggest that, when compatible with in situ practices, grasslands containing this species be mown after maturity in order to enhance seedling recruitment and to reduce competition for juveniles. Prolonged extinction times in abandoned populations offer a buffer to develop conservation schemes there. An improvement of conservation measures is urgently needed to maintain the populations of this important bioindicator and its associated community of moist species-rich fen grasslands.


Conservation Matrix population model Perturbation analysis Population growth rate (λPopulation viability Trollius europaeus 



T. L. thanks S. Porembski and the Department of Botany at the University of Rostock as well as M. Schnittler (University of Greifswald) for logistic support, I. Huismann, K. Nickschick and D. Riebold for help during fieldwork, and R. Kinzelbach (University of Rostock) for the determination of the bug larvae. R. S.-G. acknowledges financial support from the Max Planck Institute for Demographic Research and the Australian Research Council DECRA fellowship DE140100505.

Supplementary material

10144_2015_519_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1108 kb)
10144_2015_519_MOESM2_ESM.xls (258 kb)
Supplementary material 2 (XLS 258 kb)


  1. Alvarez-Buylla ER, Slatkin M (1993) Finding confidence limits on population growth rates: Monte Carlo test of a simple analytic method. Oikos 68:273–282CrossRefGoogle Scholar
  2. Bartz R-P, Bolbrinker P, Funk B, Wollert H (1984) Zum Rückgang der Trollblume (Trollius europaeus L.) im Kreis Teterow im Zeitraum von 1972 bis 1983. Naturschutzarbeit Mecklenburg 27:39–41 (in German) Google Scholar
  3. Bignal EM, McCracken DI (1996) Low intensity farming systems in the conservation of the countryside. J Appl Ecol 33:413–424CrossRefGoogle Scholar
  4. Bratteler M, Widmer A (1998) Untersuchungen zur Trollius-Chiastocheta-Interaktion in kleinen, isolierten Pflanzenpopulationen. Bull Geobot Inst ETH 64:69–76 (in German with English abstract) Google Scholar
  5. Bruchmann I, Hobohm C (2010) Halting the loss of biodiversity: endemic vascular plants in grasslands of Europe. In: Schnyder H, Isselstein J, Taube F, Auerswald K, Schellberg J, Wachendorf M, Herrmann A, Gierus M, Wrage N, Hopkins A (eds) Grassland in a changing world. Proceedings of the 23rd General Meeting of the European Grassland Federation. Mecke, Duderstadt, pp 776–778Google Scholar
  6. Brys R, Jacquemyn H, Endels P, de Blust G, Hermy M (2004) The effects of grassland management on plant performance and demography in the perennial herb Primula veris. J Appl Ecol 41:1080–1091CrossRefGoogle Scholar
  7. Caswell H (2000) Prospective and retrospective perturbation analysis: their roles in conservation biology. Ecology 81:619–627CrossRefGoogle Scholar
  8. Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates, SunderlandGoogle Scholar
  9. Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57CrossRefGoogle Scholar
  10. Chapin FS III, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447CrossRefGoogle Scholar
  11. Ciosek MT, Krechowski J, Piórek K (2013) Globe flower Trollius europaeus L. in forest and forest edge communities of the northern part of Południowopodlaska Lowland. Forest Res Pap 74:233–243Google Scholar
  12. Colling G, Matthies D (2006) Effects of habitat deterioration on population dynamics and extinction risk of an endangered, long-lived perennial herb (Scorzonera humilis). J Ecol 94:959–972CrossRefGoogle Scholar
  13. Council of the European Communities (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities Ser L 206:7–50Google Scholar
  14. de Kroon H, Plaisier A, van Groenendael J, Caswell H (1986) Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67:1427–1431CrossRefGoogle Scholar
  15. de Kroon H, van Groenendael J, Ehrlén J (2000) Elasticities: a review of methods and model limitations. Ecology 81:607–618CrossRefGoogle Scholar
  16. Dierschke H, Briemle G (2002) Kulturgrasland: Wiesen, Weiden und verwandte Staudenfluren. Ulmer, Stuttgart (in German) Google Scholar
  17. Dierssen K (1996) Vegetation Nordeuropas. Ulmer, Stuttgart (in German) Google Scholar
  18. Efron B (1982) The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  19. Ehrlén J (1995) Demography of the perennial legume, Lathyrus vernus. II. Herbivory and population dynamics. J Ecol 83:297–308CrossRefGoogle Scholar
  20. Ehrlén J, Lehtilä K (2002) How perennial are perennial plants? Oikos 98:308–322CrossRefGoogle Scholar
  21. Ehrlén J, van Groenendael J (1998) Direct perturbation analysis for better conservation. Conserv Biol 12:470–474CrossRefGoogle Scholar
  22. Ehrlén J, Syrjänen K, Leimu R, García MB, Lehtilä K (2005) Land use and population growth of Primula veris: an experimental demographic approach. J Appl Ecol 42:317–326CrossRefGoogle Scholar
  23. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart (in German) Google Scholar
  24. Endels P, Jacquemyn H, Brys R, Hermy M (2007) Reinstatement of traditional mowing regimes counteracts population senescence in the rare perennial Primula vulgaris. Appl Veg Sci 10:351–360CrossRefGoogle Scholar
  25. European Commission (2013) Eurostat database: land cover overview. Last accessed on 06 October 2014
  26. Franco M, Silvertown J (2004) A Comparative demography of plants based upon elasticities of vital rates. Ecology 85:531–538CrossRefGoogle Scholar
  27. García MB, Picó FX, Ehrlén J (2008) Life span correlates with population dynamics in perennial herbaceous plants. Am J Bot 95:258–262PubMedCrossRefGoogle Scholar
  28. Gatsuk LE, Smirnova OV, Zaugolnova LI, Zhukoca LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696CrossRefGoogle Scholar
  29. Güthler W, Oppermann R (2005) Agrarumweltprogramme und Vertragsnaturschutz weiter entwickeln. Mit der Landwirtschaft zu mehr Natur. Ergebnisse des F+E-Projektes „Angebotsnaturschutz“. Naturschutz und Biologische Vielfalt 13, Bundesamt für Naturschutz (BfN), Bonn-Bad Godesberg (in German) Google Scholar
  30. Hegi G (1965) Illustrierte Flora von Mitteleuropa, band III/3. Carl Hanser, Munich (in German) Google Scholar
  31. Heiland S (1999) Voraussetzungen erfolgreichen Naturschutzes: Individuelle und gesellschaftliche Bedingungen umweltgerechten Verhaltens, ihre Bedeutung für den Naturschutz und die Durchsetzbarkeit seiner Ziele. Schriftenreihe Angewandter Umweltschutz. Ecomed, Landsberg (in German) Google Scholar
  32. Hitchmough JD (2003) Effects of sword height, gap size, and slug grazing on emergence and establishment of Trollius europaeus (Globeflower). Restor Ecol 11:20–28CrossRefGoogle Scholar
  33. Horvitz CC, Schemske DW (1995) Spatiotemporal variation in demographic transitions of a tropical understory herb: projection matrix analysis. Ecol Monogr 65:155–192CrossRefGoogle Scholar
  34. Isselstein J, Jeangros B, Pavlu V (2005) Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe—a review. Agron Res 3:139–151Google Scholar
  35. Jacquemyn H, Brys R, Jongejans E (2010a) Seed limitation restricts population growth in shaded populations of a perennial woodland orchid. Ecology 91:119–129PubMedCrossRefGoogle Scholar
  36. Jacquemyn H, Brys R, Jongejans E (2010b) Size-dependent flowering and costs of reproduction affect population dynamics in a tuberous perennial woodland orchid. J Ecol 98:1204–1215CrossRefGoogle Scholar
  37. Jacquemyn H, Brys R, Davison R, Tuljapurkar S, Jongejans E (2011) Stochastic LTRE analysis of the effects of herbivory on the population dynamics of a perennial grassland herb. Oikos 121:211–218CrossRefGoogle Scholar
  38. Jensen K, Schrautzer J (1999) Consequences of abandonment for a regional fen flora and mechanisms of successional change. Appl Veg Sci 2:79–88CrossRefGoogle Scholar
  39. Jongejans E, de Kroon H (2005) Space versus time variation in the population dynamics of three co-occurring perennial herbs. J Ecol 93:681–692CrossRefGoogle Scholar
  40. Joyce CB, Wade PM (eds) (1998) European wet grasslands: biodiversity, management and restoration. Wiley, ChichesterGoogle Scholar
  41. Kaye TN, Pyke DA (2003) The effect of stochastic technique on estimates of population viability from transition matrix models. Ecology 84:1464–1476CrossRefGoogle Scholar
  42. Kostrakiewicz-Gierałt K (2012) The impact of neighbourhood and gap character on seedling recruitment of Trollius europaeus L. and Iris sibirica L. in Molinetum caerulae meadows. Biodivers Res Conserv 28:37–44Google Scholar
  43. Kotowski W, van Diggelen R (2004) Light as an environmental filter in fen vegetation. J Veg Sci 15:583–594CrossRefGoogle Scholar
  44. Lehtilä K, Syrjänen K, Leimu R, García MB, Ehrlén J (2006) Habitat change and demography of Primula veris: identification of management targets. Conserv Biol 20:833–843PubMedCrossRefGoogle Scholar
  45. Lemke T, Porembski S (2013) Variation in the reproductive performance of the Trollius-Chiastocheta mutualism at the edge of its range in north-east Germany. Oecologia 172:437–447PubMedCrossRefGoogle Scholar
  46. Lemke T, Janßen A, Porembski S (2015) Multiple limitations to the persistence of Trollius europaeus in a fragmented agricultural landscape in the context of metapopulation theory. Plant Ecol 216:319–330CrossRefGoogle Scholar
  47. Lennartsson T, Oostermeijer JGB (2001) Demographic variation and population viability in Gentianella campestris: effects of grassland management and environmental stochasticity. J Ecol 89:451–463CrossRefGoogle Scholar
  48. Lindborg R, Ehrlén J (2002) Evaluating the extinction risk of a perennial herb: demographic data versus historical records. Conserv Biol 16:683–690CrossRefGoogle Scholar
  49. Lucas RW, Forseth IN, Casper BB (2008) Using rainout shelters to evaluate climate change effects on the demography of Cryptantha flava. J Ecol 96:514–522CrossRefGoogle Scholar
  50. Maschinski J, Frye R, Rutman S (1997) Demography and population viability of an endangered plant species before and after protection from trampling. Conserv Biol 11:990–999CrossRefGoogle Scholar
  51. Menges ES (2000) Population viability analyses in plants: challenges and opportunities. Trends Ecol Evol 15:51–56PubMedCrossRefGoogle Scholar
  52. Menges ES, Dolan RW (1998) Demographic viability of populations of Silene regia in midwestern prairies: relationships with fire management, genetic variation, geographic location, population size and isolation. J Ecol 86:63–78CrossRefGoogle Scholar
  53. Milberg P (1994) Germination ecology of the polycarpic grassland perennials Primula veris and Trollius europaeus. Ecography 17:3–8CrossRefGoogle Scholar
  54. Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, SunderlandGoogle Scholar
  55. Moser DM, Gygax A, Bäumler B, Wyler N, Palese R (2002) Rote Liste der gefährdeten Arten der Schweiz. Farn- und Blütenpflanzen. BUWAL, Bern (in German) Google Scholar
  56. Neubert MG, Caswell H (2000) Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81:1613–1628CrossRefGoogle Scholar
  57. Oesterheld M, Sala OE (1990) Effects of grazing on seedlings establishment: the role of seed and safe-site availability. J Veg Sci 1:353–358CrossRefGoogle Scholar
  58. Oostermeijer JGB, Van’t Veer R, Den Nijs JCM (1994) Population structure of the rare, long-lived perennial Gentiana pneumonanthe in relation to vegetation and management in the Netherlands. J Appl Ecol 31:428–438CrossRefGoogle Scholar
  59. Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398CrossRefGoogle Scholar
  60. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Sala OE, Paruelo JM (1997) Ecosystem services in grasslands. In: Daily G (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 237–252Google Scholar
  62. Silvertown JW, Lovett-Doust J (1993) Introduction into plant population biology. Blackwell, OxfordGoogle Scholar
  63. Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography—relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476CrossRefGoogle Scholar
  64. Silvertown J, Franco M, Menges ES (1996) Interpretation of elasticity matrices as an aid to the management of plant populations for conservation. Conserv Biol 10:591–597CrossRefGoogle Scholar
  65. Stammel B, Kiehl K (2004) Do hoof prints actually serve as a regeneration niche for plant species in fens? Phytocoenologia 34:271–286CrossRefGoogle Scholar
  66. Stott I, Townley S, Carslake D, Hodgson DJ (2010) On reducibility and ergodicity of population projection matrix models. Methods Ecol Evol 1:242–252Google Scholar
  67. Stott I, Hodgson DJ, Townley S (2012) popdemo: an R package for population demography using projection matrix analysis. Methods Ecol Evol 3:797–802CrossRefGoogle Scholar
  68. Stubben C, Milligan B (2007) Estimating and analyzing demographic models using the popbio package in R. J Stat Softw 22:1–23CrossRefGoogle Scholar
  69. Tamm A, Kull K, Sammul M (2002) Classifying clonal growth forms based on vegetative mobility and ramet longevity: a whole community analysis. Evol Ecol 15:383–401CrossRefGoogle Scholar
  70. Taylor BL, Dizon AE (1999) First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 8:S11–S16PubMedCrossRefGoogle Scholar
  71. Tuljapurkar S (1990) Population dynamics in variable environments. Springer, New YorkCrossRefGoogle Scholar
  72. Tuljapurkar S (1997) Stochastic matrix models. In: Tuljapurkar S, Caswell H (eds) Structured population models in marine, terrestrial and freshwater ecosystems. Chapman and Hall, New York, pp 59–82CrossRefGoogle Scholar
  73. van der Meer S, Dahlgren JP, Mildén M, Ehrlén J (2014) Differential effects of abandonment on the demography of the grassland perennial Succisa pratensis. Popul Ecol 56:151–160CrossRefGoogle Scholar
  74. van Diggelen R, Middleton B, Bakker J, Grootjans A, Wassen M (2006) Fens and floodplains of the temperate zone: present status, threats, conservation and restoration. Appl Veg Sci 9:157–162CrossRefGoogle Scholar
  75. Voigtländer U, Henker H (2005) Rote Liste der gefährdeten Höheren Pflanzen Mecklenburg-Vorpommerns. Umweltministerium Mecklenburg-Vorpommern (ed), Schwerin (in German)Google Scholar

Copyright information

© The Society of Population Ecology and Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Botany, Institute of Biological SciencesUniversity of RostockRostockGermany
  2. 2.Max Planck Institute for Demographic ResearchRostockGermany
  3. 3.School of Biological Sciences, Centre for Biodiversity and Conservation ScienceThe University of QueenslandSt LuciaAustralia
  4. 4.School of Natural Sciences, Zoology DepartmentTrinity College DublinDublin 2Ireland

Personalised recommendations