Skip to main content

Density-dependent dispersal complicates spatial synchrony in tri-trophic food chains

Abstract

Spatial synchrony can increase extinction risk and undermines metapopulation persistence. Both dispersal and biotic interactions can strongly affect spatial synchrony. Here, we explore the spatial synchrony of a tri-trophic food chain in two patches connected by density-dependent dispersal, namely the strategies of prey evasion (PE) and predator pursuit (PP). The dynamics of the food chain are depicted by both the Hastings–Powell model and the chemostat model, with synchrony measured by the Pearson correlation coefficient. We use the density-independent dispersal in the system as a baseline for comparison. Results show that the density-independent dispersal of a species in the system can promote its dynamic synchrony. Dispersal of intermediate species in the tri-trophic food chain is the strongest synchronizer. In contrast, the density-dependent PP and PE of intermediate species can desynchronize the system. Highly synchronized dynamics emerged when the basal species has a strong PE strategy or when the top species has a moderate PP strategy. Our results reveal the complex relationship between density-dependent dispersal and spatial synchrony in tri-trophic systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbott K (2011) A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol Lett 14:1158–1169

    PubMed  Article  Google Scholar 

  2. Abbott K, Dwyer G (2008) Using mechanistic models to understand synchrony in forest insect populations: the north gypsy moth as a case study. Am Nat 175:613–624

    Article  Google Scholar 

  3. Akhmet M, Fen MO (2015) Entrainment of chaos. In: Akhmet M, Fen MO (eds) Replication of chaos in neural networks, economics and physics. Springer, Berlin, pp 127–156

    Google Scholar 

  4. Allen JC, Schaffer WM, Rosko D (1993) Chaos reduces species extinction by amplifying local population noise. Nature 364:229–232

    PubMed  CAS  Article  Google Scholar 

  5. Bascompte J, Solé RV (1998) Modeling spatio-temporal dynamics in ecology. Springer, Berlin

    Google Scholar 

  6. Belykh VN, Belykh IV, Hasler M (2004) Connection graph stability method for synchronized coupled chaotic systems. Phys D 195:159–187

    Article  Google Scholar 

  7. Belykh I, Piccardi C, Rinaldi S (2009) Synchrony in tritrophic food chain metacommunities. J Biol Dyn 3:497–514

    PubMed  Article  Google Scholar 

  8. Bjørnstad ON, Bascompte J (2001) Synchrony and second-order spatial correlation in host–parasitoid systems. J Anim Ecol 70:924–933

    Article  Google Scholar 

  9. Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–432

    PubMed  Article  Google Scholar 

  10. Boer MP, Kooi BW, Kooijman SALM (2001) Multiple attractors and boundary crises in a tri-trophic food chain. Math Biosci 169:109–128

    PubMed  CAS  Article  Google Scholar 

  11. Brown J, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  12. Buonaccorsi JP, Elkinton JS, Evans SR, Liebhold AM (2001) Measuring and testing for spatial synchrony. Ecology 82:1668–1679

    Article  Google Scholar 

  13. Du YH, Pang PYH, Wang MX (2008) Qualitative analysis of a prey predator model with stage structure of the predator. SIAM J Appl Math 69:596–620

    Article  Google Scholar 

  14. Earn DJD, Levin SA, Rohani P (2000) Coherence and conservation. Science 290:1360–1364

    PubMed  CAS  Article  Google Scholar 

  15. Grenfell B, Bjørnstad ON, Kappey J (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature 414:716–723

    PubMed  CAS  Article  Google Scholar 

  16. Gyllenberg M, Söderbacka G, Ericsson S (1993) Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model. Math Biosci 118:25–49

    PubMed  CAS  Article  Google Scholar 

  17. Hastings A, Powell T (1991) Chaos in a three-species food chain. Ecology 72:896–903

    Article  Google Scholar 

  18. Haydon D, Steen H (1997) The effects of large-and small-scale random events on the synchrony of metapopulation dynamics: a theoretical analysis. Proc R Soc B Biol Sci 264:1375–1381

    Article  Google Scholar 

  19. Heino M, Kaitala V, Ranta E, Lindström J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc B Biol Sci 264:481–486

    Article  Google Scholar 

  20. Holmes EE, Lewis MA, Banks JE, Vet RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75:17–29

    Article  Google Scholar 

  21. Holt RD (1997) From metapopulation dynamics to community structure: some consequences of spatial heterogeneity. In: Hanski IA, Gilpin ME (eds) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego, pp 149–164

    Chapter  Google Scholar 

  22. Hui C, McGeoch MA (2008) Does the self-similar species distribution model lead to unrealistic predictions? Ecology 89:2946–2952

    PubMed  Article  Google Scholar 

  23. Hui C, McGeoch MA (2014) Zeta diversity as a concept and metric that unifies incidence based biodiversity patterns. Am Nat 184:684–694

    PubMed  Article  Google Scholar 

  24. Hui C, Roura-Pascual N, Brotons L, Robinson RA, Evans KL (2012) Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good-stay, bad-disperse’ rule. Ecography 35:1024–1032

    Article  Google Scholar 

  25. Hui C, Richardson DM, Pyšek P, Le Roux JJ, Kučera T, Jarošík V (2013) Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants. Nat Commun 4:2454

    PubMed  PubMed Central  Article  Google Scholar 

  26. Ims RA, Andreassen HP (2005) Density-dependent dispersal and spatial population dynamics. Proc R Soc B Biol Sci 272:913–918

    Article  Google Scholar 

  27. Jansen VA (1994) Effects of dispersal in a tri-trophic metapopulations model. J Math Biol 34:195–224

    Article  Google Scholar 

  28. Jansen VA (1999) Phase locking: another causes of synchrony in predator–prey systems. Trends Ecol Evol 14:278–279

    PubMed  Article  Google Scholar 

  29. Kendall JBE, Bjørnstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation and spatial synchrony in population dynamics. Am Nat 155:628–635

    PubMed  Article  Google Scholar 

  30. Koelle K, Vandermeer J (2005) Dispersal-induced desynchronization: from metapopulations to metacommunities. Ecol Lett 8:167–175

    Article  Google Scholar 

  31. Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    PubMed  Article  Google Scholar 

  32. Kooi BW, Boer MP, Kooijman SALM (1997) Complex dynamic behaviour of autonomous microbial food chain. J Math Biol 36:24–40

    Article  Google Scholar 

  33. Li Z, Gao M, Hui C, Han X, Shi H (2005) Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation. Ecol Model 185:245–254

    Article  Google Scholar 

  34. Liebhold A, Walter D, Koenig WD, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  35. Matter SF (2001) Synchrony, extinction, and dynamics of spatially segregated, heterogeneous populations. Ecol Model 141:217–226

    Article  Google Scholar 

  36. McCann K, Hastings A (1997) Re-evaluating the omnivory–stability relationship in food webs. Proc R Soc B Biol Sci 264:1249–1254

    Article  Google Scholar 

  37. McCann K, Hastings A, Harisson S, Wilson W (2000) Population outbreaks in discrete world. Theor Popul Biol 57:97–108

    PubMed  CAS  Article  Google Scholar 

  38. Minoarivelo HO, Hui C, Terblanche JS, Kosakovsky Pond SL, Scheffler K (2014) Detecting phylogenetic signal in mutualistic interaction networks using a Markov process model. Oikos 123:1250–1260

    PubMed  PubMed Central  Article  Google Scholar 

  39. Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80:2109–2112

    CAS  Article  Google Scholar 

  40. Ramanantoanina A, Hui C, Ouhinou A (2011) Effects of density-dependent dispersal behaviours on the speed and spatial patterns of range expansion in predator–prey metapopulations. Ecol Model 222:3524–3530

    Article  Google Scholar 

  41. Ranta E, Kaitala V, Lindström L (1995) Synchrony in population dynamics. Proc R Soc B Biol Sci 262:113–118

    Article  Google Scholar 

  42. Ruxton GD (1996) Dispersal and chaos in spatially structured models: individual-level approach. J Anim Ecol 65:161–169

    Article  Google Scholar 

  43. Shi PJ, Hui C, Men XY, Zhao ZH, Ouyang F, Ge F, Jin XS, Cao HF, Li BL (2014) Cascade effects of crop species richness on the diversity of pest insects and their natural enemies. Sci China Ser C 57:718–725

    Article  Google Scholar 

  44. Sih A, Jonsson BG, Luikart G (2000) Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol 15:132–134

    Article  Google Scholar 

  45. Soufbaf M, Fathipour Y, Hui C, Karimzadeh J (2012) Effects of plant availability and habitat size on the coexistence of two competing parasitoids in a tri-trophic food web of canola, diamondback moth and parasitic wasps. Ecol Model 244:49–56

    Article  Google Scholar 

  46. Tobin PC, Bjørnstad ON (2005) Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations. Popul Ecol 47:221–227

    Article  Google Scholar 

  47. Tsyganov MA, Brindley J, Holden A, Biktashev VN (2004) Soliton-like phenomena in one-dimensional cross-diffusion systems: a predator–prey pursuit and evasion example. Phys D 197:18–33

    CAS  Article  Google Scholar 

  48. Vandermeer J (2004) Coupled oscillations in food webs: balancing competition and mutualism in simple ecological models. Am Nat 163:857–867

    PubMed  Article  Google Scholar 

  49. Vasseur DA (2007) Environmental colour intensifies the Moran effect when population dynamics are spatially heterogeneous. Oikos 116:1726–1736

    Article  Google Scholar 

  50. Wilson DD (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000

    Article  Google Scholar 

  51. Ylikarjula J, Alaja S, Laakso J, Tesar D (2000) Effects of patch number dispersal patterns on population dynamics and synchrony. J Theor Biol 207:377–387

    PubMed  CAS  Article  Google Scholar 

  52. Zhang F, Hui C, Terblanche JS (2011) An interaction switch predicts the nested architecture of mutualistic networks. Ecol Lett 14:797–803

    PubMed  Article  Google Scholar 

  53. Zhang FP, Li Z, Zhu G, Li F (2008) Influence of predator pursuit and prey evasion on synchrony in the metacommunity of three trophic food chain. J Lanzhou Univ (Nat Sci) 44(1):36–42

    Google Scholar 

  54. Zhao ZH, Hui C, Ouyang F, Liu JH, Guan XQ, He DH, Ge F (2013) Effects of inter-annual landscape change on interactions between cereal aphids and their natural enemies. Basic Appl Ecol 14:472–479

    Article  Google Scholar 

  55. Zhao ZH, Hui C, Hardev S, Ouyang F, Dong ZK, Ge F (2014) Responses of cereal aphids and their parasitic wasps to landscape complexity. J Econ Entomol 107:630–637

    PubMed  Article  Google Scholar 

  56. Zhao ZH, Hui C, He DH, Li BL (2015) Effects of agricultural intensification on ability of natural enemies to control aphids. Sci Rep 5:8024

    PubMed  CAS  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31200312). C.H. was supported by the National Research Foundation of South Africa (Nos. 89967 and 76912). The authors would also like to Beverley Laniewski for English editing and anonymous referees for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, F. & Hui, C. Density-dependent dispersal complicates spatial synchrony in tri-trophic food chains. Popul Ecol 58, 223–230 (2016). https://doi.org/10.1007/s10144-015-0515-0

Download citation

Keywords

  • Metapopulation
  • Population synchrony
  • Predator pursuit
  • Prey evasion
  • Rescue effect
  • Tri-trophic food chain