Skip to main content

Evaluating the influence of diet-related variables on breeding performance and home range behaviour of a top predator

Abstract

Diet composition is linked to reproductive performance directly or indirectly by other life-history traits, including home range behaviour. The relationships between prey abundance, diet and individual fitness have often been explored. However, these relationships are complex and difficult to disentangle, especially in vertebrate top predators. Here, we present the results of a long-term study using multi-model inference procedures to elucidate the influence of diet-related variables on breeding parameters and home range behaviour of a top predator, the eagle owl Bubo bubo. Superpredation, diet diversity, rat biomass and rabbit mean weight were the most important variables when analysing reproductive parameters, suggesting that less diverse diets with greater rabbit biomass percentage may benefit reproductive performance, whereas rat biomass percentage is apparently associated with greater variation of breeding success. Earlier laying dates seem to be associated with the consumption, on average, of smaller rabbits. On the other hand, edge density was the most relevant factor determining the variation in home range behaviour, with individual characteristics, such as age and sex, also being important. Although the relative importance of the diet-related variables was generally low, mean weight of alternative prey, diet diversity and rabbit biomass also helped to explain home range parameters. In an optimal foraging context, centred on the abundance of the main prey species, our results suggest that when rabbits are less available eagle owls may increase home range size in order to obtain alternative prey, increasing at the same time their dietary diversity, which may also require higher movement speed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Barton K (2013) MuMIn: multi-model inference. R package version 1.9.5. http://CRAN.R-project.org/package=MuMIn. Accessed 30 Oct 2013

  • Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Bjørnstad ON (2012) ncf: spatial nonparametric covariance functions. R package version 1.1-4. http://CRAN.R-project.org/package=ncf Accessed 30 Oct 2013

  • Brown ME (1996) Assessing body condition in birds. Curr Ornithol 13:67–135

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Campioni L, Delgado MM, Lourenço R, Bastianelli G, Fernández N, Penteriani V (2013) Individual and spatio-temporal variations in the home range behaviour of a long-lived, territorial species. Oecologia 172:371–385

    Article  PubMed  Google Scholar 

  • Delgado MM, Penteriani V, Nams O (2009) How fledglings explore surroundings from fledging to dispersal. A case study with eagle owls Bubo bubo. Ardea 97:7–15

    Article  Google Scholar 

  • Delibes-Mateos M, Redpath SM, Angulo E, Ferreras P, Villafuerte R (2007) Rabbits as a keystone species in southern Europe. Biol Conserv 137:149–156

    Article  Google Scholar 

  • Delibes-Mateos M, Farfán MA, Olivero J, Vargas JM (2010) Land-use changes as a critical factor for long-term wild rabbit conservation in the Iberian Peninsula. Environ Conserv 37:169–176

    Article  Google Scholar 

  • Díaz-Ruiz F, Delibes-Mateos M, García-Moreno JL, López-Martín JM, Ferreira C, Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator: the red fox Vulpes vulpes in the Iberian Peninsula. Mamm Rev 43:59–70

    Article  Google Scholar 

  • Donázar JA, Ceballos O (1989) Selective predation by eagle owls Bubo bubo on rabbits Oryctolagus cuniculus: age and sex preferences. Ornis Scand 20:117–122

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling D, Kühn I, Ohlemüller R, Peres-Neto PR, Peineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Dupuy G, Giraudoux P, Delattre P (2009) Numerical and dietary responses of a predator community in a temperate zone of Europe. Ecography 32:277–290

    Article  Google Scholar 

  • Elkie P, Rempel R, Carr (1999) Patch analyst user’s manual: a tool for quantifying landscape structure. Ontario Ministry of Natural Resources Northwest Science and Technology. http://flash.lakeheadu.ca/_rrempe/patch/. Accessed 06 Jun 2011

  • Fernández M, Oria J, Sánchez R, González LM, Margalida A (2009) Space use of adult Spanish imperial eagles Aquila adalberti. Acta Ornithol 44:17–26

    Article  Google Scholar 

  • Fernandez-de-Simon J, Díaz-Ruiz F, Cirilli F, Sánchez F, Villafuerte R, Delibes-Mateos M, Ferreras P (2011) Towards a standardized index of European rabbit abundance in Iberian Mediterranean habitats. Eur J Wildlife Res 57:1091–1100

    Article  Google Scholar 

  • Gil-Sánchez JM, Valenzuela G, Sánchez JF (1999) Iberian wild cat Felis silvestris tartessia predation on rabbit Oryctolagus cuniculus: functional response and age selection. Acta Theriol 44:421–428

    Article  Google Scholar 

  • Godinho S, Mestre F, Ferreira JP, Machado R, Santos P (2013) Effectiveness of habitat management in the recovery of low-density populations of wild rabbit. Eur J Wildl Res 59:847–858

    Article  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    CAS  Article  PubMed  Google Scholar 

  • Herrera CM, Hiraldo F (1976) Food-niche and trophic relationships among European owls. Ornis Scand 7:29–41

    Article  Google Scholar 

  • Hiraldo F, Andrada J, Parreño FF (1975) Diet of the eagle owl (Bubo bubo) in Mediterranean Spain. Doñana Acta Vertebr 2:161–177

    Google Scholar 

  • Hooge PN, Eichenlaub B (2000) Animal movement extension to ArcView, version 2.0.3. Biological Science Centre, US Geological Survey, Anchorage, Alaska. http://alaska.usgs.gov/science/biology/spatial/gistools/index.php Accessed 06 Jun 2014

  • Janes SW (1984) Influences of territory composition and interspecific competition on red-tailed hawk reproductive success. Ecology 65:862–870

    Article  Google Scholar 

  • Katzner TE, Bragin EA, Knick ST, Smith AT (2005) Relationship between demographics and diet specificity of imperial eagles Aquila heliaca in Kazakhstan. Ibis 147:576–586

    Article  Google Scholar 

  • Kenward R (1982) Goshawk hunting behaviour, and range size as a function of food and habitat availability. J Anim Ecol 51:69–80

    Article  Google Scholar 

  • Korpimäki E (1986) Diet variation, hunting habitat and reproductive output of the kestrel Falco tinnunculus in the light of the optimal diet theory. Ornis Fenn 63:84–90

    Google Scholar 

  • Korpimäki E (1992a) Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J Anim Ecol 61:103–111

    Article  Google Scholar 

  • Korpimäki E (1992b) Diet composition, prey choice, and breeding success of long-eared owls: effects of multiannual fluctuations in food abundance. Can J Zool 70:2373–2381

    Article  Google Scholar 

  • Korpimäki E, Hakkarainen H (1991) Fluctuating food supply affects the clutch size of Tengmalm’s owl independent of laying date. Oecologia 85:543–552

    Article  Google Scholar 

  • Korpimäki E, Norrdahl K (1989) Predation of Tengmalm’s owls: numerical responses, functional responses and dampening impact on population fluctuations of microtines. Oikos 54:154–164

    Article  Google Scholar 

  • Korpimäki E, Norrdahl K (1991) Numerical and functional responses of kestrels, short-eared owls, and long-eared owls to vole densities. Ecology 72:814–826

    Article  Google Scholar 

  • Korpimäki E, Sulkava S (1987) Diet and breeding performance of Ural owls Strix uralensis under fluctuating food conditions. Ornis Fenn 64:57–66

    Google Scholar 

  • Korpimäki E, Wiehn J (1998) Clutch size of kestrels: seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos 83:259–272

    Article  Google Scholar 

  • Korpimäki E, Huhtala K, Sulkava S (1990) Does the year to year variation in the diet of eagle and Ural owls support the alternative prey hypothesis? Oikos 58:47–54

    Article  Google Scholar 

  • Lourenço R (2006) The food habits of Eurasian eagle-owls in southern Portugal. J Raptor Res 40:297–300

    Article  Google Scholar 

  • Lourenço R, Santos SM, Rabaça JE, Penteriani V (2011) Superpredation patterns in four large European raptors. Popul Ecol 53:175–185

    Article  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • Marchesi L, Sergio F, Pedrini P (2002) Costs and benefits of breeding in human-altered landscapes for the eagle owl Bubo bubo. Ibis 144:E164–E177

    Article  Google Scholar 

  • Marchetti K, Price T (1989) Differences in the foraging of juvenile and adult birds—the importance of developmental constraints. Biol Rev 64:51–70

    Article  Google Scholar 

  • Margalida A, Benítez JR, Sánchez-Zapata JA, Ávila E, Arenas R, Donázar JA (2012) Long-term relationship between diet breadth and breeding success in a declining population of Egyptian vultures Neophron percnopterus. Ibis 154:184–188

    Article  Google Scholar 

  • Marti CM, Korpimäki E, Jaksic FM (1993) Trophic structure of raptor communities: a three-continent comparison and synthesis. Curr Ornithol 10:47–137

    Article  Google Scholar 

  • Martínez JE, Calvo JF (2001) Diet and breeding success of eagle owl in southeastern Spain: effect of rabbit haemorrhagic disease. J Raptor Res 35:259–262

    Google Scholar 

  • Martínez JA, Zuberogoitia I (2001) The response of the eagle owl (Bubo bubo) to an outbreak of the rabbit haemorrhagic disease. J Ornithol 142:204–211

    Article  Google Scholar 

  • Martínez JA, Zuberogoitia I, Alonso R (2002) Rapaces nocturnas: guía para la identificación de la edad y el sexo en las estrigiformes ibéricas. Monticola ediciones, Madrid (in Spanish)

    Google Scholar 

  • Moleón M, Sánchez-Zapata JA, Real J, García-Charton JA, Gil-Sánchez JM, Palma L, Bautista J, Bayle P (2009) Large-scale spatio-temporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J Biogeogr 36:1502–1515

    Article  Google Scholar 

  • Moleón M, Sánchez-Zapata JA, Gil-Sánchez JM, Ballesteros-Duperón E, Barea-Azcón JM, Virgós E (2012) Predator-prey relationships in a Mediterranean vertebrate system: Bonelli’s eagles, rabbits and partridges. Oecologia 168:679–689

    Article  PubMed  Google Scholar 

  • Moreno S, Villafuerte R (1995) Traditional management of scrubland for the conservation of rabbits Oryctolagus cuniculus and their predators in Doñana national park, Spain. Biol Conserv 73:81–85

    Article  Google Scholar 

  • Moreno S, Villafuerte R, Delibes M (1996) Cover is safe during the day but dangerous at night: the use of vegetation by European wild rabbits. Can J Zool 74:1656–1660

    Article  Google Scholar 

  • Newton I, Marquiss M (1984) Seasonal trend in the breeding performance of sparrowhawks. J Anim Ecol 53:809–829

    Article  Google Scholar 

  • Ontiveros D, Pleguezuelos JM, Caro J (2005) Prey density, prey detectability and food habits: the case of Bonelli’s eagle and the conservation measures. Biol Conserv 123:19–25

    Article  Google Scholar 

  • Penteriani V, Delgado MM (2008) Brood-switching in eagle owl Bubo bubo fledglings. Ibis 150:816–819

    Article  Google Scholar 

  • Penteriani V, Gallardo M, Roche P (2002) Landscape structure and food supply affect eagle owl (Bubo bubo) density and breeding performance: a case of intra-population heterogeneity. J Zool 257:365–372

    Article  Google Scholar 

  • Penteriani V, Delgado MM, Maggio C, Aradis A, Sergio F (2005) Development of chicks and predispersal behaviour of young in the eagle owl Bubo bubo. Ibis 147:155–168

    Article  Google Scholar 

  • Penteriani V, Delgado MM, Bartolommei P, Maggio C, Alonso-Alvarez C, Holloway GJ (2008) Owls and rabbits: predation against substandard individuals of an easy prey. J Avian Biol 39:215–221

    Article  Google Scholar 

  • Penteriani V, Delgado MM, Campioni L, Lourenço R (2010) Moonlight makes owls more chatty. PLoS one 5(1):e8696

    PubMed Central  Article  PubMed  Google Scholar 

  • Penteriani V, Rutz C, Kenward R (2013) Hunting behaviour and breeding performance of northern goshawks Accipiter gentilis, in relation to resource availability, sex, age and morphology. Naturwissenschaften 100:935–942

    CAS  Article  PubMed  Google Scholar 

  • Pérez-García JM, Sánchez-Zapata JA, Botella F (2012) Distribution and breeding performance of a high-density eagle owl Bubo bubo population in southeast Spain. Bird Study 59:22–28

    Article  Google Scholar 

  • Pérez-Mellado V (1980) Alimentación del búho real (Bubo bubo L.) en España central. Ardeola 25:93–112 (in Spanish)

    Google Scholar 

  • Perry G, Pianka ER (1997) Animal foraging: past, present and future. Trends Ecol Evol 12:360–364

    CAS  Article  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 30 Oct 2013

  • Santangeli A, Hakkarainen H, Laaksonen T, Korpimäki E (2012) Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim Behav 83:1115–1123

    Article  Google Scholar 

  • Schoener TW (1971) Theory of feeding strategies. Annu Rev Ecol Syst 2:369–404

    Article  Google Scholar 

  • Serrano D (2000) Relationship between raptors and rabbits in the diet of eagle owls in southwestern Europe: competition removal or food stress? J Raptor Res 34:305–310

    Google Scholar 

  • Sih A, Christensen B (2001) Optimal diet theory: when does it work, and when and why does it fail? Anim Behav 61:379–390

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Monographs on statistics and applied probability. Chapman and Hall, London

    Book  Google Scholar 

  • Soriguer RC (1981a) Estructuras de sexos y edades en una población de conejos (Oryctolagus cuniculus L.) de Andalucía occidental. Doñana Acta Vertebrata 8:225–236 (in Spanish)

    Google Scholar 

  • Soriguer RC (1981b) Biología y dinamica de una población de conejos (Oryctolagus cuniculus L.) en Andalucia occidental. Doñana Acta Vertebrata 8–3 (special issue) (in Spanish)

  • Steenhof K, Kochert MN (1988) Dietary responses of three raptor species to changing prey densities in a natural environment. J Anim Ecol 57:37–48

    Article  Google Scholar 

  • Terraube J, Arroyo B, Madders M, Mougeot F (2011) Diet specialisation and foraging efficiency under fluctuating vole abundance: a comparison between generalist and specialist avian predators. Oikos 120:234–244

    Article  Google Scholar 

  • Virgós E, Llorente M, Cortés Y (1999) Geographical variation in genet (Genetta genetta L.) diet: a literature review. Mamm Rev 29:119–128

    Article  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2013) gplots: Various R programming tools for plotting data. R package version 2.11.3. http://CRAN.R-project.org/package=gplots. Accessed 30 Oct 2013

  • Watson J (1997) The golden eagle. T. and A.D Poyser, London

    Google Scholar 

  • Werner EE, Hall DJ (1974) Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55:1042–1052

    Article  Google Scholar 

  • Whitfield DP, Reid R, Haworth PF, Madders M, Marquiss M, Tingay R, Fielding AH (2009) Diet specificity is not associated with increased reproductive performance of golden eagles Aquila chrysaetos in western Scotland. Ibis 151:255–264

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Wunderle JM (1991) Age-specific foraging proficiency in birds. Curr Ornithol 8:273–324

    Google Scholar 

Download references

Acknowledgments

We acknowledge the comments of David Serrano and two anonymous reviewers which improved a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lourenço.

Ethics declarations

The authors declare that they have no conflict of interest. The Spanish Ministry of Economy and Competitiveness (CGL2012–33240; FEDER co-financing) funded this study. R.L. (BPD/78241/2011) and L.C. (BPD/89904/2012) were supported by post-doctoral grants from Fundação para a Ciência e a Tecnologia (Portugal POPH/QREN). We trapped eagle owls under Junta de Andalucía-Consejería Medio Ambiente authorizations (SCFFS-AFR/GGG RS-260/02; SCFFS-AFR/CMM RS-1904/02), ensuring the welfare of all involved animals. All authors have expressed their explicit consent for the publication of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 144 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lourenço, R., Delgado, M.M., Campioni, L. et al. Evaluating the influence of diet-related variables on breeding performance and home range behaviour of a top predator. Popul Ecol 57, 625–636 (2015). https://doi.org/10.1007/s10144-015-0506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-015-0506-1

Keywords

  • Diet diversity
  • Foraging theory
  • Optimal diet
  • Predator–prey relationships
  • Prey size variation