Skip to main content
Log in

Adaptive defense of pests and switching predation can improve biological control by multiple natural enemies

  • Original article
  • Published:
Population Ecology

Abstract

One of the most important questions in biological control is whether multiple natural enemies can provide greater suppression of agricultural pests than a single best enemy. Intraguild predation (IGP) among natural enemies has often been invoked to explain failure of biological control by multiple enemies, and classical theoretical studies on IGP have supported this view. However, empirical studies are inconclusive and have yielded both positive and negative results. We extend classical models by considering anti-predator behavior of pests and diet switching of omnivorous natural enemies, and examine their effects on pest control. We assume that the pest can adaptively allocate effort toward the specific defense against each predator, and that the omnivorous natural enemy can consume disproportionately more of the relatively abundant prey (switching predation) by type III functional responses to prey items. The model predicts that adaptive defense augments pests but favors introduction of multiple natural enemies for controlling pests if IGP is weak. In contrast, switching predation does not make pest control by multiple natural enemies advantageous as in classical studies, in the absence of adaptive defense. However, switching predation reduces the necessity of defense by the pest against the omnivore and offsets the effect of adaptive defense. Thus, it makes the introduction of multiple natural enemies advantageous for pest control when the pest employs adaptive defense even if IGP is strong. These results suggest that types and combinations of behavior of prey and predators may greatly affect qualitative outcomes of biological control by multiple natural enemies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams PA, Fung SR (2010) Prey persistence and abundance in systems with intraguild predation and type-2 functional responses. J Theor Biol 264:1033–1042

    Article  PubMed  Google Scholar 

  • Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564

    Article  Google Scholar 

  • Armstrong RA, McGehee R (1980) Competitive exclusion. Am Nat 115:151–170

    Article  Google Scholar 

  • Bernstein C (1984) Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis. Oecologia 61:134–142

    Article  Google Scholar 

  • Briggs CJ, Borer ET (2005) Why short-term experiments may not allow long-term predictions about intraguild predation. Ecol Appl 15:1111–1117

    Article  Google Scholar 

  • Chow A, Chau A, Heinz KM (2008) Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses. Biol Control 44:259–270

    Article  Google Scholar 

  • Cortez MH (2011) Comparing the qualitatively different effects rapidly evolving and rapidly induced defences have on predator-prey interactions. Ecol Lett 14:202–209

    Article  PubMed  Google Scholar 

  • Daugherty MP, Harmon JP, Briggs CJ (2007) Trophic supplements to intraguild predation. Oikos 116:662–677

    Article  Google Scholar 

  • Davey JS, Vaughan IP, King RA, Bell JR, Bohan DA, Bruford MW, Holland JM, Symondson WOC (2013) Intraguild predation in winter wheat: prey choice by a common epigeal carabid consuming spiders. J Appl Ecol 50:271–279

    Article  Google Scholar 

  • Dinter A (2002) Microcosm studies on intraguild predation between female erigonid spiders and lacewing larvae and influence of single versus multiple predators on cereal aphids. J Appl Entomol 126:249–257

    Article  Google Scholar 

  • Eubanks MD (2001) Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biol Control 21:35–43

    Article  Google Scholar 

  • Foglar H, Malausa JC, Wajnberg E (1990) The functional response and preference of Macrolophus caliginosus [Heteroptera: Miridae] for two of its prey: Myzus persicae and Tetranychus urticae. Entomophaga 35:465–474

    Article  Google Scholar 

  • Griffin JN, Byrnes JEK, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta-analysis. Ecology 94:2180–2187

    Article  PubMed  Google Scholar 

  • Grostal P, Dicke M (1999) Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behav Ecol 10:422–427

    Article  Google Scholar 

  • Hiltunen T, Hairston NG Jr, Hooker G, Jones LE, Ellner SP (2014) A newly discovered role of evolution in previously published consumer-resource dynamics. Ecol Lett 17:915–923

    Article  PubMed  Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:745–764

    Article  Google Scholar 

  • Hsu SB, Hubbell SP, Waltman P (1978) A contribution to the theory of competing predators. Ecol Monogr 48:337–349

    Article  Google Scholar 

  • Hughes RN, Croy MI (1993) An experimental analysis of frequency-dependent predation (switching) in the 15-spined stickleback, Spinachia spinachia. J Anim Ecol 62:341–352

    Article  Google Scholar 

  • Ikegawa Y, Ezoe H, Namba T, Tuda M (2014) Effects of nonspecific adaptive defense by pests on efficiency of biological control by multiple natural enemies. J Fac Agric Kyusyu Univ 59:305–311

    Google Scholar 

  • Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis W (2006) Intraguild predation usually does not disrupt biological control. In: Broduer J, Boivin G (eds) Trophic and guild interactions in biological control. Springer, Dordrecht, pp 21–44

    Chapter  Google Scholar 

  • Kakehashi N, Suzuki Y, Iwasa Y (1984) Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. J Appl Ecol 21:115–131

    Article  Google Scholar 

  • Kimbrell T, Holt RD, Lundberg P (2007) The influence of vigilance on intraguild predation. J Theor Biol 249:218–234

    Article  PubMed  Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270

    Article  CAS  PubMed  Google Scholar 

  • Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Kondoh M (2007) Anti-predator defence and the complexity-stability relationship of food webs. Proc R Soc B-Biol Sci 274:1617–1624

    Article  Google Scholar 

  • Kondoh M (2008) Building trophic modules into a persistent food web. Proc Natl Acad Sci USA 105:16631–16635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Křivan V (2000) Optimal intraguild foraging and population stability. Theor Popul Biol 58:79–94

    Article  PubMed  Google Scholar 

  • Křivan V, Diehl S (2005) Adaptive omnivory and species coexistence in tri-trophic food webs. Theor Popul Biol 67:85–99

    Article  PubMed  Google Scholar 

  • Kuijper LDJ, Kooi BW, Zonneveld C, Kooijman SALM (2003) Omnivory and food web dynamics. Ecol Model 163:19–32

    Article  Google Scholar 

  • Magalhães S, Tudorache C, Montserrat M, van Maanen R, Sabelis MW, Janssen A (2004) Diet of intraguild predators affects antipredator behavior in intraguild prey. Behav Ecol 16:364–370

    Article  Google Scholar 

  • Matsuda H, Kawasaki K, Shigesada N, Teramoto E, Ricciardi LM (1986) Switching effect on the stability of the prey-predator system with three trophic levels. J Theor Biol 122:251–262

    Article  Google Scholar 

  • Matsuda H, Hori M, Abrams PA (1996) Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level communities. Evol Ecol 10:13–28

    Article  Google Scholar 

  • Murdoch WW, Avery S, Smyth MEB (1975) Switching in predatory fish. Ecology 56:1094–1105

    Article  Google Scholar 

  • Nakazawa T, Miki T, Namba T (2010) Influence of predator-specific defense adaptation on intraguild predation. Oikos 119:418–427

    Article  Google Scholar 

  • Okuyama T (2009) Intraguild predation in biological control: consideration of multiple resource species. Biocontrol 54:3–7

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    Article  PubMed  Google Scholar 

  • Pallini A, Janssen A, Sabelis MW (1999) Spider mites avoid plants with predators. Exp Appl Acarol 23:803–815

    Article  Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154

    Article  CAS  PubMed  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  • Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annu Rev Entomol 43:421–447

    Article  CAS  PubMed  Google Scholar 

  • Rosenheim JA (2001) Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol Monogr 71:93–116

    Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    Article  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Control 5:303–335

    Article  Google Scholar 

  • Saavedra JLD, Torres JB, Ruiz MG (1997) Dispersal and parasitism of Heliothis virescens eggs by Trichogramma pretiosum (Riley) in cotton. Int J Pest Manag 43:169–171

    Article  Google Scholar 

  • Schausberger P, Walzer A (2001) Combined versus single species release of predaceous mites: predator-predator interactions and pest suppression. Biol Control 20:269–278

    Article  Google Scholar 

  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791

    Article  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  CAS  PubMed  Google Scholar 

  • Snyder WE, Ives AR (2001) Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–716

    Article  Google Scholar 

  • Snyder WE, Ives AR (2003) Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84:91–107

    Article  Google Scholar 

  • Stewart FM, Levin BR (1973) Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am Nat 107:171–198

    Article  Google Scholar 

  • Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34:236–246

    Article  Google Scholar 

  • van Baalen M, Křivan V, van Rijn PCJ, Sabelis MW (2001) Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat 157:512–524

    Article  PubMed  Google Scholar 

  • Venzon M, Janssen A, Sabelis MW (2001) Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Exp Appl Acarol 25:785–808

    Article  CAS  PubMed  Google Scholar 

  • Vos M, Kooi BW, DeAngelis DL, Mooij WM (2004) Inducible defences and the paradox of enrichment. Oikos 105:471–480

    Article  Google Scholar 

  • Walzer A, Schausberger P (1999) Predation preferences and discrimination between con- and heterospecific prey by the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus. Biocontrol 43:469–478

    Article  Google Scholar 

  • Yamamichi M, Yoshida T, Sasaki A (2011) Comparing the effects of rapid evolution and phenotypic plasticity on predator-prey dynamics. Am Nat 178:287–304

    Article  PubMed  Google Scholar 

  • Yano E (2004) Recent development of biological control and IPM in greenhouses in Japan. J Asia-Pacific Entomol 7:5–11

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express sincere thanks to the handling editor and two anonymous reviewers for their useful comments on the earlier manuscripts. This research was financially supported by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) KAKENHI 23570034 to HE and 22570026 to TN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ikegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikegawa, Y., Ezoe, H. & Namba, T. Adaptive defense of pests and switching predation can improve biological control by multiple natural enemies. Popul Ecol 57, 381–395 (2015). https://doi.org/10.1007/s10144-014-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-014-0468-8

Keywords

Navigation