Abstract
In this note, we discuss parameter estimation for population models based on partial differential equations (PDEs). Parametric estimation is first considered in the perspective of inverse problems (i.e., when the observation of the solution of a PDE is exactly observed or noise-free). Then, adopting the point of view of statistics, we turn to parametric estimation for PDEs using more realistic noisy measurements. The approach that we describe uses mechanistic-statistical models which combine (1) a PDE-based submodel describing the dynamic under study and (2) a stochastic submodel describing the observation process. This Note is expected to contribute to bridge the gap between modelers using PDEs and population ecologists collecting and analyzing spatio-temporal data.
References
Berliner LM (2003) Physical-statistical modeling in geophysics. J Geophys Res 108:8776
Berliner LM, Cressie N, Jezek K, Kim Y, Lam CQ, van der Veen CJ (2008) Equilibrium dynamics of ice streams: a bayesian statistical analysis. Stat Method Appl 17:145–165
Buckland ST, Newman KB, Thomas L, Koesters NB (2004) State-space models for the dynamics of wild animal populations. Ecol Model 171:157–175
Campbell EP (2004) An introduction to physical-statistical modelling using Bayesian methods. Tech Rep 49, CSIRO Mathematical and Information Sciences, Australia
Casella G (1985) An introduction to empirical Bayes data analysis. Am Stat 39:83–87
Choulli M (2009) Une introduction aux probl‘emes inverses elliptiques et paraboliques. Springer, Paris (in French)
Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken
Dacunha-Castelle D, Duflo M (1982) Probabilités et Statistiques. Probèlmes à Temps Mobile, vol 2. Masson, Paris (in French)
Efron B (2013) Bayes’ theorem in the 21st century. Science 340:1177–1178
Evans LC (1998) Partial differential equations. University of California, Berkeley
Evensen G (2009) Data assimilation: the ensemble Kalman filter, 2nd edn. Springer-Verlag, Berlin
Hadamard J (1923) Lectures on Cauchy’s problem in linear partial differential equations. Dover Publications, New York
Harmon R, Challenor P (1997) A Markov chain Monte Carlo method for estimation and assimilation into models. Ecol Model 101:41–59
Ionides EL, Breto C, King AA (2006) Inference for nonlinear dynamical systems. Proc Natl Acad Sci USA 103:18438–18443
Isakov V (1990) Inverse source problems. American Mathematical Society, Providence
Jones E, Parslow J, Murray L (2010) A Bayesian approach to state and parameter estimation in a Phytoplankton–Zooplankton model. Aust Meteorol Ocean 59:7–16
Marin J-M, Robert C (2007) Bayesian core: a practical approach to computational Bayesian statistics. Springer-Verlag, New York
Murray JD (2002) Mathematical biology, 3rd edn. Springer-Verlag, Berlin
Okubo A, Levin SA (2002) Diffusion and ecological problems—modern perspectives, 2nd edn. Springer-Verlag, New York
Ramsay JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a generalized smoothing approach. J R Stat Soc B 69:741–796
Rivot E, Prévost E, Parent E, Baglinière JL (2004) A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data. Ecol Model 179:463–485
Robert CP, Casella G (1999) Monte Carlo statistical methods. Springer, New York
Roques L, Cristofol M (2010) On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation. Nonlinearity 23:675–686
Roques L, Soubeyrand S, Rousselet J (2011) A statistical-reaction-diffusion approach for analyzing expansion processes. J Theor Biol 274:43–51
Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, New York
Serfling RJ (2002) Approximation theorems of mathematical statistics. Wiley, New York
Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford University Press. Oxford
Soubeyrand S, Laine A, Hanski I, Penttinen A (2009a) Spatio-temporal structure of host-pathogen interactions in a metapop- ulation. Am Nat 174:308–320
Soubeyrand S, Neuvonen S, Penttinen A (2009b) Mechanical-statistical modelling in ecology: from outbreak detections to pest dynamics. Bull Math Biol 71:318–338
Tong H (1990) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford
Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer, Sunderland
Wikle CK (2003a) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84:1382–1394
Wikle CK (2003b) Hierarchical models in environmental science. Int Stat Rev 71:181–199
Wikle CK, Berliner LM (2007) A Bayesian tutorial for data assimilation. Physica D 230:1–16
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Electronic supplementary material
AVI (82 KB)
Electronic supplementary material
AVI (117 KB)
Rights and permissions
About this article
Cite this article
Soubeyrand, S., Roques, L. Parameter estimation for reaction-diffusion models of biological invasions. Popul Ecol 56, 427–434 (2014). https://doi.org/10.1007/s10144-013-0415-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10144-013-0415-0