Population Ecology

, Volume 55, Issue 3, pp 417–431 | Cite as

Local genetic structure of a montane herb among isolated grassland patches: implications for the preservation of genetic diversity under climate change

  • Anna Ernst
  • Jan Sauer
  • Rüdiger Wittig
  • Carsten Nowak
Original article


Habitat loss, fragmentation of meadow patches, and global climate change (GCC) threaten plant communities of montane grasslands. We analyzed the genetic structure of the montane herb Geranium sylvaticum L. on a local scale in order to understand the effects of habitat fragmentation and potential GCC impacts on genetic diversity and differentiation. Amplified fragment length polymorphism (AFLP) fingerprinting and cpDNA sequencing was performed for 295 individuals of 15 G. sylvaticum populations spanning the entire distribution range of the species in the Taunus mountain range in Germany. We found patterns of substantial genetic differentiation among populations using 150 polymorphic AFLP markers (mean F ST = 0.105), but no variation in 896 bp of plastid DNA sequences. While populations in the center of their local distribution range were genetically diverse and less differentiated, higher F ST values and reduced genetic variability was revealed for the populations at the low-altitudinal distribution margins. Projections of GCC effects on the distribution of G. sylvaticum in 2050 showed that GCC will likely lead to the extinction of most edge populations. To maintain regional genetic diversity, conservation efforts should focus on the diverse high-altitude populations, although a potential loss of unique variations in genetically differentiated peripheral populations could lower the overall genetic diversity and potentially the long-term viability in the study region. This study documents the usefulness of fine-scale assessments of genetic population structure in combination with niche modeling to reveal priority regions for the effective long-term conservation of populations and their genetic variation under climate change.


AFLP Global climate change Habitat fragmentation Landscape genetics Low mountain ranges Montane plants 



We are especially grateful to Tobias Erik Reiners for editing the maps of our study site. Barbara Herte, Thomas Michl, Katja Kramp, and Katharina Schulte provided valuable advice concerning marker development and testing. This study was funded by the Hessian Initiative for Scientific and Economic Excellence (LOEWE—Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz) of the Hessian Ministry of Higher Education, Research, and the Arts.

Supplementary material

10144_2013_373_MOESM1_ESM.pdf (229 kb)
Supplementary material 1 (PDF 228 kb)


  1. Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188PubMedCrossRefGoogle Scholar
  2. Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecol Biogeogr 18:223–239CrossRefGoogle Scholar
  3. Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc B Biol Sci 353:177–186CrossRefGoogle Scholar
  4. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14:529–538CrossRefGoogle Scholar
  5. Asikainen E, Mutikainen P (2003) Female frequency and relative fitness of females and hermaphrodites in gynodioecious Geranium sylvaticum (Geraniaceae). Am J Bot 90:226–234PubMedCrossRefGoogle Scholar
  6. Asikainen E, Mutikainen P (2004) Inbreeding depression and outcrossing rate in 11 populations of gynodioecious Geranium sylvaticum. In: Asikainen E (ed) Maintenance of gynodioecy in Geranium sylvaticum. PhD Dissertation. University of Turku, Turku, pp 107–122Google Scholar
  7. ATKIS (2010) Amtliches Topographisch-Kartographisches Informationssystem. Bundesamt für Kartographie und Geodäsie (BKG), FrankfurtGoogle Scholar
  8. Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger KT, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nature Clim Change 1:313–318CrossRefGoogle Scholar
  9. Bijlsma R, Loeschke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129CrossRefGoogle Scholar
  10. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  11. Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708PubMedCrossRefGoogle Scholar
  12. Bruelheide H (2003) Translocation of a montane meadow to simulate the potential impact of climate change. Appl Veg Sci 6:23–24CrossRefGoogle Scholar
  13. Buckland SM, Thompson K, Hodgson JG, Grime JP (2001) Grassland invasions: effects of manipulations of climate and management. J Appl Ecol 38:301–309CrossRefGoogle Scholar
  14. Busby JR (1991) A bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO Australia, Clayton South, pp 64–68Google Scholar
  15. Corander J, Marttinen P, Siren J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma 9:539CrossRefGoogle Scholar
  16. Cordellier M, Pfenninger M (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18:534–544PubMedCrossRefGoogle Scholar
  17. Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327PubMedCrossRefGoogle Scholar
  18. Dostálek T, Münzbergová Z, Plačková I (2010) Genetic diversity and its effect on fitness in an endangered plant species, Dracocephalum austriacum L. Conserv Genet 11:773–783CrossRefGoogle Scholar
  19. Dubey S, Shine S (2010) Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae). Mol Ecol 19:886–897PubMedCrossRefGoogle Scholar
  20. Duchesne P, Turgeon J (2009) FLOCK: a method for quick mapping of admixture without source samples. Mol Ecol Resour 9:1333–1344PubMedCrossRefGoogle Scholar
  21. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  22. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  23. Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 2nd edn. Ulmer Verlag, Stuttgart (in German)Google Scholar
  24. ESRI—Environmental Systems Research Institute (2006) ArcGIS 9.3. Environmental Systems Research Institute, RedlandsGoogle Scholar
  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  26. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  27. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  28. Fielding AH, Bell JF (1994) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  29. Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Clim Dyn 16:451–467CrossRefGoogle Scholar
  30. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  31. Frankham R, Ballou JD, Briscoe DA (2002) An introduction to conservation genetics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  32. Fridley JD, Grime P, Askew AP, Moser B, Stevens CJ (2011) Soil heterogeneity buffers community response to climate change in species-rich grassland. Global Change Biol 17:2002–2011CrossRefGoogle Scholar
  33. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  34. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448PubMedCrossRefGoogle Scholar
  35. Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765PubMedCrossRefGoogle Scholar
  36. Grime JP, Fridley JD, Askew AP, Thompson K, Hodgson JG, Bennett CR (2008) Long-term resistance to simulated climate change in an infertile grassland. Proc Natl Acad Sci USA 105:10028–10032PubMedCrossRefGoogle Scholar
  37. Gruver A, Dutton JA (2012) Geography 486—cartography and visualization. e-Education Institute, College of Earth and Mineral Sciences, The Pennsylvania State University.
  38. Hæggström C (1990) The influence of sheep and cattle grazing on wooded meadows in Åland, SW Finland. Acta Bot Fenn 141:1–28Google Scholar
  39. Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community—results of a climate-warming experiment. Science 267:876–880PubMedCrossRefGoogle Scholar
  40. Hartl DL, Clark AG (1989) Principles of population genetics, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  41. Hegi G (1975) Illustrierte Flora von Mitteleuropa. Verlag Paul Parey, Berlin (in German)Google Scholar
  42. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12:2272–2281CrossRefGoogle Scholar
  43. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005a) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  44. Hijmans RJ, Guarino L, Jarvis A, O’Brien R, Mathur P, Bussink C, Cruz M, Barrantes I, Rojas E (2005b) DIVA-GIS version 5.2 manual. (cited February 2011)
  45. Hof AR, Jansson R, Nilsson C (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Divers Distrib 18:554–562CrossRefGoogle Scholar
  46. Holsinger KE, Lewis PO (2003) Hickory: a package for analysis of population genetic data v1.1. (cited July 6 2010)
  47. Hundt R (1966) Ökologisch-geobotanische Untersuchungen an Pflanzen der mitteleuropäischen Wiesenvegetation. Botanische Studien 16 (in German)Google Scholar
  48. IPCC (2007) Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  49. Jakob SS, Ihlow A, Blattner FR (2007) Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)—niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol Ecol 16:1713–1727PubMedCrossRefGoogle Scholar
  50. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  51. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6 v.3.16. (cited Nov 3 2010)
  52. Katterfeldt D (2006) Standortanalyse von Geranium sylvaticum im Kontext des Klimawandels. Diploma thesis. Johann Wolfgang Goethe University, Department for Ecology and Geobotany, Frankfurt (in German)Google Scholar
  53. Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516CrossRefGoogle Scholar
  54. Kumar S, Spaulding SA, Stohlgren TJ, Hermann KA, Schmidt TS, Bahls LL (2009) Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Front Ecol Environ 7:415–420CrossRefGoogle Scholar
  55. La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Philos Trans R Soc B Biol Sci 277:3401–3410Google Scholar
  56. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952CrossRefGoogle Scholar
  57. Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  58. Lihová J, Kudoh H, Marhold K (2010) Genetic structure and phylogeography of a temperate-boreal herb, Cardamine scutata (Brassicaceae), in Northeast Asia inferred from AFLPs and cpDNA haplotypes. Am J Bot 97:1058–1070PubMedCrossRefGoogle Scholar
  59. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10:3–13CrossRefGoogle Scholar
  60. Lüscher A, Daepp M, Blum H, Hartwig UE, Nösberger J (2004) Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur J Agron 21:379–398CrossRefGoogle Scholar
  61. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedCrossRefGoogle Scholar
  62. Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  63. Messtischblätter des Königlich Preußischen Generalstabs (Maps of the Royal Prussian Generality) 1:25000, mapped 1866/67. Reprinted by Hessisches Landesvermessungsamt Wiesbaden, WiesbadenGoogle Scholar
  64. Meusel H, Jäger E, Rauschert S, Weinert E (1978) Vergleichende Chorologie der zentraleuropäischen Flora. Gustav Fischer Verlag, Jena (in German)Google Scholar
  65. Moen J, Gardfjell H, Ericson L, Oksanen L (1996) Shoot survival under intense grazing for two broad-leaved herbs with different chemical defense systems. Oikos 75:359–364CrossRefGoogle Scholar
  66. Morecroft MD, Masters GJ, Brown VK, Clark IP, Taylor ME, Whitehouse AT (2004) Changing precipitation patterns alter plant community dynamics and succession in an ex-arable grassland. Funct Ecol 18:648–655CrossRefGoogle Scholar
  67. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254PubMedCrossRefGoogle Scholar
  68. Müller-Schneider P (1977) Verbreitungsbiologie (Diasporologie) der Blütenpflanzen. Veröffentlichungen des geobotanischen Institutes der eidgenössischen technischen Hochschule, Stiftung Rübel 61:226 (in German)Google Scholar
  69. Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröffentlichungen des geobotanischen Institutes der eidgenössischen technischen Hochschule, Stiftung Rübel 85:261 (in German)Google Scholar
  70. Mutikainen P, Delph LF (1998) Inbreeding depression in gynodioecious Lobelia siphilitica: among-family differences override between-morph differences. Evolution 52:1572–1582CrossRefGoogle Scholar
  71. Nawrath S (2005) Flora und Vegetation des Grünlands im südöstlichen Taunus und seinem Vorland. PhD Dissertation. Johann Wolfgang Goethe University, Department for Ecology and Geobotany, Frankfurt (in German)Google Scholar
  72. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  73. Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecol Biogeogr 17:152–163CrossRefGoogle Scholar
  74. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  75. Pearse DE, Hayes SA, Bond MH, Hanson CV, Anderson EC, Macfarlane RB, Garza JC (2009) Over the falls? Rapid evolution of ecotypic differentiation in Steelhead/Rainbow Trout (Oncorhynchus mykiss). J Hered 100:515–525PubMedCrossRefGoogle Scholar
  76. Perttula U (1941) Untersuchungen über die generative und vegetative Vermehrung der Blütenpflanzen in der Wald-, Hainwiesen- und Hainfelsenvegetation. Ann Acad Sci Fenn Ser A Tom LVIII(1), Helsinki (in German)Google Scholar
  77. Petit RJ, Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  78. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff, pp 83–90Google Scholar
  79. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  80. Pompe S, Hanspach J, Badeck F, Klotz S, Thuiller W, Kühn I (2008) Climate and land use change impacts on plant distributions in Germany. Biol Lett 4:564–567PubMedCrossRefGoogle Scholar
  81. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  82. Poschlod P, Dannemann A, Kahmen S, Melzheimer V, Biedermann H, Mengel C, Neugebauer KR, Pantle I (1999) Genes in the landscape—change in central European land use and its impact on genetic diversity of plants. Schriftenreihe Vegetationskunde 32:111–127Google Scholar
  83. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  84. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147PubMedCrossRefGoogle Scholar
  85. Ramírez J, Bueno-Cabrera A (2009) Working with climate data and niche modeling I. Creation of bioclimatic variables.
  86. Ramula S, Toivonen E, Mutikainen P (2007) Demographic consequences of pollen limitation and inbreeding depression in a gynodioecious herb. Int J Plant Sci 168:443–453CrossRefGoogle Scholar
  87. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103PubMedGoogle Scholar
  88. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  89. Rejzkova E, Fer T, Vojta J, Marhold K (2008) Phylogeography of the forest herb Carex pilosa (Cyperaceae). Bot J Linn Soc 158:115–130CrossRefGoogle Scholar
  90. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  91. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  92. Salzmann R, Schenker P (1946) Der Gehalt des Kuhkotes an keimfähigen Samen auf einer Weide der Voralpen. Schweizerischer Alpwirtschaftlicher Verein, Alpwirtschaftliche Monatsblätter 80:58–64 (in German)Google Scholar
  93. Scherrer D, Körner C (2010) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416CrossRefGoogle Scholar
  94. Schumacher W (2005) Ressourcenschonende Grünlandnutzung—Erfolge, Probleme, Perspektiven. Schriftenreihe des Lehr- und Forschungsschwerpunktes „Umweltverträgliche und Standortgerechte Landwirtschaft“, Landwirtschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 130:1–3 (in German)Google Scholar
  95. Sebald O, Seybold S, Phillipi G (1992) Die Farn- und Blütenpflanzen Baden-Württembergs. Ulmer Verlag, Stuttgart (in German)Google Scholar
  96. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166PubMedCrossRefGoogle Scholar
  97. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  98. Sonibare MA, Asiedu R, Albach DC (2010) Genetic diversity of Dioscorea dumetorum (Kunth) Pax using amplified fragment length polymorphisms (AFLP) and cpDNA. Biochem Syst Ecol 38:320–334CrossRefGoogle Scholar
  99. Storfer A (1996) Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Trends Ecol Evol 11:343–348PubMedCrossRefGoogle Scholar
  100. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  101. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250PubMedCrossRefGoogle Scholar
  102. Todisco V, Gratton P, Zakharov E, Wheat C, Sbordoni V, Sperling F (2012) Mitochondrial phylogeography of the holarctic Parnassius phoebus complex supports a recent refugial model for alpine butterflies. J Biogeogr 39:1058–1072CrossRefGoogle Scholar
  103. Uebeler M, Ehmke W, Nawrath S, König A, Wittig R (2008) Ergebnisse der Floristischen Kartierung im Hohen Taunus. In: Wittig R, Uebeler M, Ehmke W (eds) Die Flora des Hohen Taunus. Geobot Kolloq, vol 21, pp 23–42 (in German with English abstract)Google Scholar
  104. Varga S, Kytoviita MM (2010) Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in Geranium sylvaticum. Funct Ecol 24:750–758CrossRefGoogle Scholar
  105. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedCrossRefGoogle Scholar
  106. Vogler DW, Kalisz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55:202–204PubMedGoogle Scholar
  107. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  108. Weaver KF, Anderson T, Guralnick R (2006) Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Divers Distrib 12:756–766CrossRefGoogle Scholar
  109. Westergaard KB, Jorgensen MH, Gabrielsen TM, Alsos IG, Brochmann C (2010) The extreme Beringian/Atlantic disjunction in Saxifraga rivularis (Saxifragaceae) has formed at least twice. J Biogeogr 37:1262–1276CrossRefGoogle Scholar
  110. Wirth LR, Graf R, Gugerli F, Landergott U, Holderegger R (2010) Lower selfing rate at higher altitudes in the alpine plant Eritrichium nanum (Boraginaceae). Am J Bot 97:899–901PubMedCrossRefGoogle Scholar
  111. Wittig R, Becker U, Nawrath S (2010) Grassland loss in the vicinity of a highly prospering metropolitan area from 1867/68 to 2000-the example of the Taunus (Hesse, Germany) and its Vorland. Landsc Urban Plan 95:175–180CrossRefGoogle Scholar
  112. Wu Z, Dijkstra P, Koch GW, Hungate BA (2012) Biogeochemical and ecological feedbacks in grassland responses to warming. Nat Clim Change 2:458–461CrossRefGoogle Scholar
  113. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418PubMedCrossRefGoogle Scholar
  114. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913PubMedCrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer Japan 2013

Authors and Affiliations

  • Anna Ernst
    • 1
    • 2
  • Jan Sauer
    • 1
    • 2
  • Rüdiger Wittig
    • 1
    • 3
  • Carsten Nowak
    • 1
    • 2
  1. 1.Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany
  2. 2.Conservation Genetics GroupSenckenberg Research Institutes and Natural History MuseumsGelnhausenGermany
  3. 3.Department of Ecology and Geobotany, Institute of Ecology, Evolution and DiversityGoethe UniversityFrankfurt am MainGermany

Personalised recommendations