Skip to main content
Log in

Cyclicity and variability in prey dynamics strengthens predator numerical response: the effects of vole fluctuations on white stork productivity

  • Original article
  • Published:
Population Ecology

Abstract

Theory predicts that optimality of life-long investment in reproduction is, among other factors, driven by the variability and predictability of the resources. Similarly, during the breeding season, single resource pulses characterized by short periods and high amplitudes enable strong numerical responses in their consumers. However, it is less well established how spatio-temporal dynamics in resource supplies influence the spatio-temporal variation of consumer reproduction. We used the common vole (Microtus arvalis)—white stork (Ciconia ciconia) resource—consumer model system to test the effect of increased temporal variation and periodicity of vole population dynamics on the strength of the local numerical response of storks. We estimated variability, cycle amplitude, and periodicity (by means of direct and delayed density dependence) in 13 Czech and Polish vole populations. Cross-correlation between annual stork productivity and vole abundance, characterizing the strength of the local numerical response of storks, increased when the vole population fluctuated more and population cycles were shorter. We further show that the onset of incubation of storks was delayed during the years of higher vole abundance. We demonstrate that high reproductive flexibility of a generalist consumer in tracking the temporal dynamics of its resource is driven by the properties of the local resource dynamics and we discuss possible mechanisms behind these patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antczak M, Konwerski S, Grobelny S, Tryjanowski P (2002) The food composition of immature and non-breeding white storks in Poland. Waterbirds 25:424–428

    Article  Google Scholar 

  • Beissinger SR (1986) Demography, environmental uncertainty, and the evolution of mate desertion in the snail kite. Ecology 67:1445–1459

    Article  Google Scholar 

  • Bjørnstad ON, Falck W, Stenseth NC (1995) Geographic gradient in small rodent density fluctuations: a statistical modeling approach. Proc R Soc B 262:127–133

    Article  PubMed  Google Scholar 

  • Bjørnstad ON, Champely S, Stenseth NC, Saitoh T (1996) Cyclicity and stability of grey-sided voles, Clethrionomys rufocanus, of Hokkaido: spectral and principal components analyses. Philos Trans R Soc B Biol Sci 351:867–875

    Article  Google Scholar 

  • Boonstra R, Krebs CJ (2012) Population dynamics of red-backed voles (Myodes) in North America. Oecologia 168:601–620

    Article  PubMed  Google Scholar 

  • Boyce MS, Perrins CM (1987) Optimizing great tit clutch size in a fluctuating environment. Ecology 68:142–153

    Article  Google Scholar 

  • Brommer J, Kokko H, Pietiäinen H (2000) Reproductive effort and reproductive values in periodic environments. Am Nat 155:454–472

    Article  Google Scholar 

  • Bryja J, Nesvadbová J, Heroldová M, Jánová E, Losík J, Trebatická L, Tkadlec E (2005) Common vole (Microtus arvalis) population sex ratio: biases and process variation. Can J Zool 83:1391–1399

    Article  Google Scholar 

  • Carlisle TR (1982) Brood success in variable environments: implications for parental care allocation. Anim Behav 30:824–836

    Article  Google Scholar 

  • Carrascal LM, Bautista LM, Lázaro E (1993) Geographical variation in the density of the white stork Ciconia ciconia in Spain—influence of habitat structure and climate. Biol Conserv 65:83–87

    Article  Google Scholar 

  • Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    Article  PubMed  CAS  Google Scholar 

  • Djerdali S, Tortosa FS, Doumandji S (2008a) Do white stork (Ciconia ciconia) parents exert control over food distribution when feeding is indirect? Ethol Ecol Evol 20:361–374

    Article  Google Scholar 

  • Djerdali S, Tortosa FS, Hillström L, Doumandji S (2008b) Food supply and external cues limit the clutch size and hatchability in the white stork Ciconia ciconia. Acta Ornithol 43:145–150

    Article  Google Scholar 

  • Elton CS (1924) Periodic fluctuations in the numbers of animals—their causes and effects. Br J Exp Biol 2:119–163

    Google Scholar 

  • EPPO (1975) Guidelines for the development and biological evaluation of rodenticides. EPPO Bull Paris 5:5–49

    Google Scholar 

  • Fischer B, Taborsky B, Dieckmann U (2009) Unexpected patterns of plastic energy allocation in stochastic environments. Am Nat 173:E108–E120

    Article  PubMed  Google Scholar 

  • Fransson T, Kolehmainen T, Kroon C, Jansson L, Wenninger T (2010) EURING list of longevity records for European birds. European Union for Bird Ringing. http://www.euring.org/data_and_codes/longevity-voous.htm

  • Friman VP, Laakso J (2011) Pulsed-resource dynamics constrain the evolution of predator-prey interactions. Am Nat 177:334–345

    Article  PubMed  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Hansson L, Henttonen H (1985) Gradients in density variations of small rodents—the importance of latitude and snow cover. Oecologia 67:394–402

    Article  Google Scholar 

  • Henttonen H, Oksanen T, Jortikka A, Haukisalmi V (1987) How much do weasels shape microtine cycles in the northern Fennoscandian taiga? Oikos 50:353–365

    Article  Google Scholar 

  • Hipkiss T, Stefansson O, Hörnfeldt B (2008) Effect of cyclic and declining food supply on great grey owls in boreal Sweden. Can J Zool 86:1426–1431

    Article  Google Scholar 

  • Hirshfield MF, Tinkle DW (1975) Natural selection and the evolution of reproductive effort. Proc Natl Acad Sci USA 72:2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Holt RD (2008) Theoretical perspectives on resource pulses. Ecology 89:671–681

    Article  PubMed  Google Scholar 

  • Hörnfeldt B, Hipkiss T, Eklund U (2005) Fading out of vole and predator cycles? Proc R Soc B 272:2045–2049

    Article  PubMed  Google Scholar 

  • Ims RA, Henden JA, Killengreen ST (2008) Collapsing population cycles. Trends Ecol Evol 23:79–86

    Article  PubMed  Google Scholar 

  • Jaksic FM, Lima M (2003) Myths and facts on ratadas: bamboo blooms, rainfall peaks and rodent outbreaks in South America. Austral Ecol 28:237–251

    Article  Google Scholar 

  • Jánová E, Heroldová M, Bryja J (2008) Conspicuous demographic and individual changes in a population of the common vole in a set-aside alfalfa field. Ann Zool Fenn 45:39–54

    Article  Google Scholar 

  • Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities. The Białowieża primeval forest as a case study. Springer, Heidelberg

    Google Scholar 

  • Jovani R, Tella JL (2004) Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography 27:611–618

    Article  Google Scholar 

  • Kania W (2006) Movement of Polish white storks (Ciconia ciconia)—an analysis of ringing results. In: Tryjanowski P, Sparks TH, Jerzak L (eds) The white stork in Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań, pp 249–294

    Google Scholar 

  • Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–97

    Article  PubMed  CAS  Google Scholar 

  • Korpimäki E (1986) Gradients in population fluctuations of Tengmalms owl Aegolius funereus in Europe. Oecologia 69:195–201

    Article  Google Scholar 

  • Korpimäki E (1994) Rapid or delayed tracking of multiannual vole cycles by avian predators. J Anim Ecol 63:619–628

    Article  Google Scholar 

  • Korpimäki E, Lagerström M (1988) Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J Anim Ecol 57:433–441

    Article  Google Scholar 

  • Korpimäki E, Norrdahl K (1991a) Numerical and functional responses of kestrels, short-eared owls, and long-eared owls to vole densities. Ecology 72:814–826

    Article  Google Scholar 

  • Korpimäki E, Norrdahl K (1991b) Do breeding nomadic avian predators dampen population fluctuations of small mammals? Oikos 62:195–208

    Article  Google Scholar 

  • Korpimäki E, Hakkarainen H, Laaksonen T, Vasko V (2009) Responses of owls and Eurasian kestrels to spatio-temporal variation of their main prey. Ardea 97:646–647

    Article  Google Scholar 

  • Kosicki J, Profus P, Dolata PT, Tobółka M (2006) Food composition and energy demand of the white stork (Ciconia ciconia) breeding population. Literature survey and preliminary results from Poland. In: Tryjanowski P, Sparks TH, Jerzak L (eds) The White Stork in Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań, pp 169–183

    Google Scholar 

  • Krebs CJ (2011) Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc B 278:481–489

    Article  PubMed  Google Scholar 

  • Lack D (1950) The breeding seasons of European birds. Ibis 92:288–316

    Article  Google Scholar 

  • Lambin X, Bretagnolle V, Yoccoz NG (2006) Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? J Anim Ecol 75:340–349

    Article  PubMed  Google Scholar 

  • Leirs H, Stenseth NC, Nichols JD, Hines JE, Verhagen R, Verheyen W (1997) Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389:176–180

    Article  PubMed  CAS  Google Scholar 

  • Li W, Stevens MHH (2012) Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121:435–441

    Article  Google Scholar 

  • Linkola P, Myllymäki A (1969) Der Einfluss der Kleinsäugerfluktuationen auf das Brüten einiger kleinsäugerfressenden Vögel im südlichen Häme, Mittelfinnland 1952–66. Ornis Fenn 46:45–78 (in German with English abstract)

    Google Scholar 

  • Liro A (1974) Renewal of burrows by the common vole as the indicator of its numbers. Acta Theriol 19:259–272

    Google Scholar 

  • Lisická L, Losík J, Zejda J, Heroldová M, Nesvadbová J, Tkadlec E (2007) Measurement error in a burrow index to monitor relative population size in the common vole. Folia Zool 56:169–176

    Google Scholar 

  • Low BS (1978) Environmental uncertainty and parental strategies of marsupials and placentals. Am Nat 112:197–213

    Article  Google Scholar 

  • Naef-Daenzer B, Widmer F, Nuber M (2001) Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J Anim Ecol 70:730–738

    Article  Google Scholar 

  • Nott MP, Desante DF, Siegel RB, Pyle P (2002) Influences of the El Nino/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the Pacific Northwest of North America. Glob Ecol Biogeogr 11:333–342

    Article  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–237

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast: ecological connections in eastern deciduous forests. Bioscience 46:323–330

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Perrins CM (1970) The timing of birds breeding seasons. Ibis 112:242–255

    Article  Google Scholar 

  • Pitelka FA, Batzli GO (2007) Population cycles of lemmings near Barrow, Alaska: a historical review. Acta Theriol 52:323–336

    Article  Google Scholar 

  • Pokorná L, Beranová R, Huth R (2007) The relationships between circulation modes and climatic elements in the Czech Republic and their time variations. Meteorologické zprávy (Meteorol Bull) 60:65–76 (in Czech with English abstract)

    Google Scholar 

  • Pucek Z, Jędrzejewski W, Jędrzejewska B, Pucek M (1993) Rodent population dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop, and predation. Acta Theriol 38:199–232

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rohner C, Smith JNM, Stroman J, Joyce M, Doyle FI, Boonstra R (1995) Northern hawk-owls in the Nearctic boreal forest: prey selection and population consequences of multiple prey cycles. Condor 97:208–220

    Article  Google Scholar 

  • Romankow-Żmudowska A, Grala B (1994) Occurrence and distribution of the common vole, Microtus arvalis (Pallas), in legumes and seed grasses in Poland between 1977 and 1992. Pol Ecol Stud 20:503–508

    Google Scholar 

  • Royama T (1992) Analytical population dynamics. Chapman & Hall, London

    Book  Google Scholar 

  • Saitoh T, Stenseth NC, Bjørnstad ON (1998) The population dynamics of the vole Clethrionomys rufocanus in Hokkaido, Japan. Res Popul Ecol 40:61–76

    Article  Google Scholar 

  • Saitoh T, Bjørnstad ON, Stenseth NC (1999) Density dependence in voles and mice: a comparative study. Ecology 80:638–650

    Article  Google Scholar 

  • Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81:2428–2441

    Article  Google Scholar 

  • Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108:783–790

    Article  Google Scholar 

  • Schmidt KA, Ostfeld RS (2008) Numerical and behavioral effects within a pulse-driven system: consequences for shared prey. Ecology 89:635–646

    Article  PubMed  Google Scholar 

  • Schultz H (1998) Ciconia ciconia white stork. BWP Update 2:69–105

    Google Scholar 

  • Sears ALW, Holt RD, Polis GA (2004) Feast and famine in food webs: the effects of pulsed productivity. In: Polis GA, Power ME, Huxel GR (eds) Food webs at the landscape level. The University of Chicago Press, Chicago, pp 359–386

    Google Scholar 

  • Sergio F, Marchesi L, Pedrini P (2008) Density, diet and productivity of long-eared owls Asio otus in the Italian Alps: the importance of Microtus voles. Bird Study 55:321–328

    Article  Google Scholar 

  • Stenseth NC (1999) Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world. Oikos 87:427–461

    Article  Google Scholar 

  • Stenseth NC, Bjørnstad ON, Saitoh T (1996) A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan. Proc R Soc B 263:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc R Soc B 270:2087–2096

    Article  PubMed  Google Scholar 

  • Tkadlec E, Stenseth NC (2001) A new geographical gradient in vole population dynamics. Proc R Soc B 268:1547–1552

    Article  PubMed  CAS  Google Scholar 

  • Tkadlec E, Zejda J (1998) Small rodent population fluctuations: the effects of age structure and seasonality. Evol Ecol 12:191–210

    Article  Google Scholar 

  • Tkadlec E, Lisická-Lachnitová L, Losík J, Heroldová M (2011) Systematic error is of minor importance to feedback structure estimates derived from time series of nonlinear population indices. Popul Ecol 53:495–500

    Article  Google Scholar 

  • Tortosa FS, Castro F (2003) Development of thermoregulatory ability during ontogeny in the white stork Ciconia ciconia. Ardeola 50:39–45

    Google Scholar 

  • Tortosa FS, Pérez L, Hillström L (2003) Effect of food abundance on laying date and clutch size in the white stork Ciconia ciconia. Bird Study 50:112–115

    Article  Google Scholar 

  • Tryjanowski P, Kuźniak S (2002) Population size and productivity of the white stork Ciconia ciconia in relation to common vole Microtus arvalis density. Ardea 90:213–217

    Google Scholar 

  • Tryjanowski P, Sparks TH (2008) The relationship between phenological traits and brood size of the white stork Ciconia ciconia in western Poland. Acta Oecol 33:203–206

    Article  Google Scholar 

  • Tryjanowski P, Sparks TH, Profus P (2009) Severe flooding causes a crash in production of white stork (Ciconia ciconia) chicks across Central and Eastern Europe. Basic Appl Ecol 10:387–392

    Article  Google Scholar 

  • van Noordwijk AJ, McCleery RH, Perrins CM (1995) Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J Anim Ecol 64:451–458

    Article  Google Scholar 

  • Vergara P, Aguirre JI, Fargallo JA, Dávila JA (2006) Nest-site fidelity and breeding success in white stork Ciconia ciconia. Ibis 148:672–677

    Article  Google Scholar 

  • Whitney P (1976) Population ecology of two sympatric species of subarctic microtine rodents. Ecol Monogr 46:85–104

    Article  Google Scholar 

  • Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690

    Article  Google Scholar 

  • Witman JD, Genovese SJ, Bruno JF, McLaughlin JW, Pavlin BI (2003) Massive prey recruitment and the control of rocky subtidal communities on large spatial scales. Ecol Monogr 73:441–462

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall, Boca Raton

    Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–634

    Article  PubMed  Google Scholar 

  • Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A meta-analysis of resource pulse–consumer interactions. Ecol Monogr 80:125–151

    Article  Google Scholar 

  • Yee DA, Juliano SA (2012) Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169:511–522

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jaroslav Škopek, Jiří Formánek and Petr Klvaňa for assistance with accessing the ringing records, and Tore Slagsvold, Helene M. Lampe, Piotr Tryjanowski, Leif Chr. Stige and Roger Jovani for inspiring discussions on our work and/or for comments on the previous versions of the manuscript. This study would not be possible without contribution and enthusiasm of B. Rejman, S. Chvapil, S. Beneda, Z. Moudrý, T. Soliński, P. Profus, J. Dąbrowski, S. Pijanowski, J. Ptaszyk and many more Czech and Polish ringers and observers. Jan Heisig provided technical support in preparing the map and Jason D. Whittington kindly improved the English. This study was supported by the Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo. P.A. was supported by Czech Science Foundation (GAČR 206/07/0483); P.A. and E.T. by Grant MSM6198959212 of the Ministry of Education of the Czech Republic and T.A. was partially supported by the Grants no. 0021620828 and AV0Z60930519 of the Ministry of Education of the Czech Republic and by the Research Centrum project no. LC06073. JC was supported by the Ministry of Culture of the Czech Republic—Grant no. DKRVO 00023272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hušek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hušek, J., Adamík, P., Albrecht, T. et al. Cyclicity and variability in prey dynamics strengthens predator numerical response: the effects of vole fluctuations on white stork productivity. Popul Ecol 55, 363–375 (2013). https://doi.org/10.1007/s10144-013-0366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-013-0366-5

Keywords

Navigation