Population Ecology

, Volume 55, Issue 2, pp 363–375 | Cite as

Cyclicity and variability in prey dynamics strengthens predator numerical response: the effects of vole fluctuations on white stork productivity

  • Jan Hušek
  • Peter Adamík
  • Tomáš Albrecht
  • Jaroslav Cepák
  • Wojciech Kania
  • Eva Mikolášková
  • Emil Tkadlec
  • Nils Chr. Stenseth
Original article


Theory predicts that optimality of life-long investment in reproduction is, among other factors, driven by the variability and predictability of the resources. Similarly, during the breeding season, single resource pulses characterized by short periods and high amplitudes enable strong numerical responses in their consumers. However, it is less well established how spatio-temporal dynamics in resource supplies influence the spatio-temporal variation of consumer reproduction. We used the common vole (Microtus arvalis)—white stork (Ciconia ciconia) resource—consumer model system to test the effect of increased temporal variation and periodicity of vole population dynamics on the strength of the local numerical response of storks. We estimated variability, cycle amplitude, and periodicity (by means of direct and delayed density dependence) in 13 Czech and Polish vole populations. Cross-correlation between annual stork productivity and vole abundance, characterizing the strength of the local numerical response of storks, increased when the vole population fluctuated more and population cycles were shorter. We further show that the onset of incubation of storks was delayed during the years of higher vole abundance. We demonstrate that high reproductive flexibility of a generalist consumer in tracking the temporal dynamics of its resource is driven by the properties of the local resource dynamics and we discuss possible mechanisms behind these patterns.


Environmental gradient Periodicity Reproductive flexibility Resource pulse Trophic interactions 



We thank Jaroslav Škopek, Jiří Formánek and Petr Klvaňa for assistance with accessing the ringing records, and Tore Slagsvold, Helene M. Lampe, Piotr Tryjanowski, Leif Chr. Stige and Roger Jovani for inspiring discussions on our work and/or for comments on the previous versions of the manuscript. This study would not be possible without contribution and enthusiasm of B. Rejman, S. Chvapil, S. Beneda, Z. Moudrý, T. Soliński, P. Profus, J. Dąbrowski, S. Pijanowski, J. Ptaszyk and many more Czech and Polish ringers and observers. Jan Heisig provided technical support in preparing the map and Jason D. Whittington kindly improved the English. This study was supported by the Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo. P.A. was supported by Czech Science Foundation (GAČR 206/07/0483); P.A. and E.T. by Grant MSM6198959212 of the Ministry of Education of the Czech Republic and T.A. was partially supported by the Grants no. 0021620828 and AV0Z60930519 of the Ministry of Education of the Czech Republic and by the Research Centrum project no. LC06073. JC was supported by the Ministry of Culture of the Czech Republic—Grant no. DKRVO 00023272.

Supplementary material

10144_2013_366_MOESM1_ESM.pdf (318 kb)
Supplementary material (PDF 317 kb)


  1. Antczak M, Konwerski S, Grobelny S, Tryjanowski P (2002) The food composition of immature and non-breeding white storks in Poland. Waterbirds 25:424–428CrossRefGoogle Scholar
  2. Beissinger SR (1986) Demography, environmental uncertainty, and the evolution of mate desertion in the snail kite. Ecology 67:1445–1459CrossRefGoogle Scholar
  3. Bjørnstad ON, Falck W, Stenseth NC (1995) Geographic gradient in small rodent density fluctuations: a statistical modeling approach. Proc R Soc B 262:127–133PubMedCrossRefGoogle Scholar
  4. Bjørnstad ON, Champely S, Stenseth NC, Saitoh T (1996) Cyclicity and stability of grey-sided voles, Clethrionomys rufocanus, of Hokkaido: spectral and principal components analyses. Philos Trans R Soc B Biol Sci 351:867–875CrossRefGoogle Scholar
  5. Boonstra R, Krebs CJ (2012) Population dynamics of red-backed voles (Myodes) in North America. Oecologia 168:601–620PubMedCrossRefGoogle Scholar
  6. Boyce MS, Perrins CM (1987) Optimizing great tit clutch size in a fluctuating environment. Ecology 68:142–153CrossRefGoogle Scholar
  7. Brommer J, Kokko H, Pietiäinen H (2000) Reproductive effort and reproductive values in periodic environments. Am Nat 155:454–472CrossRefGoogle Scholar
  8. Bryja J, Nesvadbová J, Heroldová M, Jánová E, Losík J, Trebatická L, Tkadlec E (2005) Common vole (Microtus arvalis) population sex ratio: biases and process variation. Can J Zool 83:1391–1399CrossRefGoogle Scholar
  9. Carlisle TR (1982) Brood success in variable environments: implications for parental care allocation. Anim Behav 30:824–836CrossRefGoogle Scholar
  10. Carrascal LM, Bautista LM, Lázaro E (1993) Geographical variation in the density of the white stork Ciconia ciconia in Spain—influence of habitat structure and climate. Biol Conserv 65:83–87CrossRefGoogle Scholar
  11. Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803PubMedCrossRefGoogle Scholar
  12. Djerdali S, Tortosa FS, Doumandji S (2008a) Do white stork (Ciconia ciconia) parents exert control over food distribution when feeding is indirect? Ethol Ecol Evol 20:361–374CrossRefGoogle Scholar
  13. Djerdali S, Tortosa FS, Hillström L, Doumandji S (2008b) Food supply and external cues limit the clutch size and hatchability in the white stork Ciconia ciconia. Acta Ornithol 43:145–150CrossRefGoogle Scholar
  14. Elton CS (1924) Periodic fluctuations in the numbers of animals—their causes and effects. Br J Exp Biol 2:119–163Google Scholar
  15. EPPO (1975) Guidelines for the development and biological evaluation of rodenticides. EPPO Bull Paris 5:5–49Google Scholar
  16. Fischer B, Taborsky B, Dieckmann U (2009) Unexpected patterns of plastic energy allocation in stochastic environments. Am Nat 173:E108–E120PubMedCrossRefGoogle Scholar
  17. Fransson T, Kolehmainen T, Kroon C, Jansson L, Wenninger T (2010) EURING list of longevity records for European birds. European Union for Bird Ringing.
  18. Friman VP, Laakso J (2011) Pulsed-resource dynamics constrain the evolution of predator-prey interactions. Am Nat 177:334–345PubMedCrossRefGoogle Scholar
  19. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233CrossRefGoogle Scholar
  20. Hansson L, Henttonen H (1985) Gradients in density variations of small rodents—the importance of latitude and snow cover. Oecologia 67:394–402CrossRefGoogle Scholar
  21. Henttonen H, Oksanen T, Jortikka A, Haukisalmi V (1987) How much do weasels shape microtine cycles in the northern Fennoscandian taiga? Oikos 50:353–365CrossRefGoogle Scholar
  22. Hipkiss T, Stefansson O, Hörnfeldt B (2008) Effect of cyclic and declining food supply on great grey owls in boreal Sweden. Can J Zool 86:1426–1431CrossRefGoogle Scholar
  23. Hirshfield MF, Tinkle DW (1975) Natural selection and the evolution of reproductive effort. Proc Natl Acad Sci USA 72:2227–2231PubMedCrossRefGoogle Scholar
  24. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398CrossRefGoogle Scholar
  25. Holt RD (2008) Theoretical perspectives on resource pulses. Ecology 89:671–681PubMedCrossRefGoogle Scholar
  26. Hörnfeldt B, Hipkiss T, Eklund U (2005) Fading out of vole and predator cycles? Proc R Soc B 272:2045–2049PubMedCrossRefGoogle Scholar
  27. Ims RA, Henden JA, Killengreen ST (2008) Collapsing population cycles. Trends Ecol Evol 23:79–86PubMedCrossRefGoogle Scholar
  28. Jaksic FM, Lima M (2003) Myths and facts on ratadas: bamboo blooms, rainfall peaks and rodent outbreaks in South America. Austral Ecol 28:237–251CrossRefGoogle Scholar
  29. Jánová E, Heroldová M, Bryja J (2008) Conspicuous demographic and individual changes in a population of the common vole in a set-aside alfalfa field. Ann Zool Fenn 45:39–54CrossRefGoogle Scholar
  30. Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities. The Białowieża primeval forest as a case study. Springer, HeidelbergGoogle Scholar
  31. Jovani R, Tella JL (2004) Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography 27:611–618CrossRefGoogle Scholar
  32. Kania W (2006) Movement of Polish white storks (Ciconia ciconia)—an analysis of ringing results. In: Tryjanowski P, Sparks TH, Jerzak L (eds) The white stork in Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań, pp 249–294Google Scholar
  33. Kausrud KL, Mysterud A, Steen H, Vik JO, Østbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhøy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456:93–97PubMedCrossRefGoogle Scholar
  34. Korpimäki E (1986) Gradients in population fluctuations of Tengmalms owl Aegolius funereus in Europe. Oecologia 69:195–201CrossRefGoogle Scholar
  35. Korpimäki E (1994) Rapid or delayed tracking of multiannual vole cycles by avian predators. J Anim Ecol 63:619–628CrossRefGoogle Scholar
  36. Korpimäki E, Lagerström M (1988) Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J Anim Ecol 57:433–441CrossRefGoogle Scholar
  37. Korpimäki E, Norrdahl K (1991a) Numerical and functional responses of kestrels, short-eared owls, and long-eared owls to vole densities. Ecology 72:814–826CrossRefGoogle Scholar
  38. Korpimäki E, Norrdahl K (1991b) Do breeding nomadic avian predators dampen population fluctuations of small mammals? Oikos 62:195–208CrossRefGoogle Scholar
  39. Korpimäki E, Hakkarainen H, Laaksonen T, Vasko V (2009) Responses of owls and Eurasian kestrels to spatio-temporal variation of their main prey. Ardea 97:646–647CrossRefGoogle Scholar
  40. Kosicki J, Profus P, Dolata PT, Tobółka M (2006) Food composition and energy demand of the white stork (Ciconia ciconia) breeding population. Literature survey and preliminary results from Poland. In: Tryjanowski P, Sparks TH, Jerzak L (eds) The White Stork in Poland: studies in biology, ecology and conservation. Bogucki Wydawnictwo Naukowe, Poznań, pp 169–183Google Scholar
  41. Krebs CJ (2011) Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc B 278:481–489PubMedCrossRefGoogle Scholar
  42. Lack D (1950) The breeding seasons of European birds. Ibis 92:288–316CrossRefGoogle Scholar
  43. Lambin X, Bretagnolle V, Yoccoz NG (2006) Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? J Anim Ecol 75:340–349PubMedCrossRefGoogle Scholar
  44. Leirs H, Stenseth NC, Nichols JD, Hines JE, Verhagen R, Verheyen W (1997) Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature 389:176–180PubMedCrossRefGoogle Scholar
  45. Li W, Stevens MHH (2012) Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121:435–441CrossRefGoogle Scholar
  46. Linkola P, Myllymäki A (1969) Der Einfluss der Kleinsäugerfluktuationen auf das Brüten einiger kleinsäugerfressenden Vögel im südlichen Häme, Mittelfinnland 1952–66. Ornis Fenn 46:45–78 (in German with English abstract)Google Scholar
  47. Liro A (1974) Renewal of burrows by the common vole as the indicator of its numbers. Acta Theriol 19:259–272Google Scholar
  48. Lisická L, Losík J, Zejda J, Heroldová M, Nesvadbová J, Tkadlec E (2007) Measurement error in a burrow index to monitor relative population size in the common vole. Folia Zool 56:169–176Google Scholar
  49. Low BS (1978) Environmental uncertainty and parental strategies of marsupials and placentals. Am Nat 112:197–213CrossRefGoogle Scholar
  50. Naef-Daenzer B, Widmer F, Nuber M (2001) Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J Anim Ecol 70:730–738CrossRefGoogle Scholar
  51. Nott MP, Desante DF, Siegel RB, Pyle P (2002) Influences of the El Nino/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the Pacific Northwest of North America. Glob Ecol Biogeogr 11:333–342CrossRefGoogle Scholar
  52. Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–237PubMedCrossRefGoogle Scholar
  53. Ostfeld RS, Jones CG, Wolff JO (1996) Of mice and mast: ecological connections in eastern deciduous forests. Bioscience 46:323–330CrossRefGoogle Scholar
  54. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290PubMedCrossRefGoogle Scholar
  55. Perrins CM (1970) The timing of birds breeding seasons. Ibis 112:242–255CrossRefGoogle Scholar
  56. Pitelka FA, Batzli GO (2007) Population cycles of lemmings near Barrow, Alaska: a historical review. Acta Theriol 52:323–336CrossRefGoogle Scholar
  57. Pokorná L, Beranová R, Huth R (2007) The relationships between circulation modes and climatic elements in the Czech Republic and their time variations. Meteorologické zprávy (Meteorol Bull) 60:65–76 (in Czech with English abstract)Google Scholar
  58. Pucek Z, Jędrzejewski W, Jędrzejewska B, Pucek M (1993) Rodent population dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop, and predation. Acta Theriol 38:199–232Google Scholar
  59. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  60. Rohner C, Smith JNM, Stroman J, Joyce M, Doyle FI, Boonstra R (1995) Northern hawk-owls in the Nearctic boreal forest: prey selection and population consequences of multiple prey cycles. Condor 97:208–220CrossRefGoogle Scholar
  61. Romankow-Żmudowska A, Grala B (1994) Occurrence and distribution of the common vole, Microtus arvalis (Pallas), in legumes and seed grasses in Poland between 1977 and 1992. Pol Ecol Stud 20:503–508Google Scholar
  62. Royama T (1992) Analytical population dynamics. Chapman & Hall, LondonCrossRefGoogle Scholar
  63. Saitoh T, Stenseth NC, Bjørnstad ON (1998) The population dynamics of the vole Clethrionomys rufocanus in Hokkaido, Japan. Res Popul Ecol 40:61–76CrossRefGoogle Scholar
  64. Saitoh T, Bjørnstad ON, Stenseth NC (1999) Density dependence in voles and mice: a comparative study. Ecology 80:638–650CrossRefGoogle Scholar
  65. Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81:2428–2441CrossRefGoogle Scholar
  66. Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108:783–790CrossRefGoogle Scholar
  67. Schmidt KA, Ostfeld RS (2008) Numerical and behavioral effects within a pulse-driven system: consequences for shared prey. Ecology 89:635–646PubMedCrossRefGoogle Scholar
  68. Schultz H (1998) Ciconia ciconia white stork. BWP Update 2:69–105Google Scholar
  69. Sears ALW, Holt RD, Polis GA (2004) Feast and famine in food webs: the effects of pulsed productivity. In: Polis GA, Power ME, Huxel GR (eds) Food webs at the landscape level. The University of Chicago Press, Chicago, pp 359–386Google Scholar
  70. Sergio F, Marchesi L, Pedrini P (2008) Density, diet and productivity of long-eared owls Asio otus in the Italian Alps: the importance of Microtus voles. Bird Study 55:321–328CrossRefGoogle Scholar
  71. Stenseth NC (1999) Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world. Oikos 87:427–461CrossRefGoogle Scholar
  72. Stenseth NC, Bjørnstad ON, Saitoh T (1996) A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan. Proc R Soc B 263:1117–1126PubMedCrossRefGoogle Scholar
  73. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc R Soc B 270:2087–2096PubMedCrossRefGoogle Scholar
  74. Tkadlec E, Stenseth NC (2001) A new geographical gradient in vole population dynamics. Proc R Soc B 268:1547–1552PubMedCrossRefGoogle Scholar
  75. Tkadlec E, Zejda J (1998) Small rodent population fluctuations: the effects of age structure and seasonality. Evol Ecol 12:191–210CrossRefGoogle Scholar
  76. Tkadlec E, Lisická-Lachnitová L, Losík J, Heroldová M (2011) Systematic error is of minor importance to feedback structure estimates derived from time series of nonlinear population indices. Popul Ecol 53:495–500CrossRefGoogle Scholar
  77. Tortosa FS, Castro F (2003) Development of thermoregulatory ability during ontogeny in the white stork Ciconia ciconia. Ardeola 50:39–45Google Scholar
  78. Tortosa FS, Pérez L, Hillström L (2003) Effect of food abundance on laying date and clutch size in the white stork Ciconia ciconia. Bird Study 50:112–115CrossRefGoogle Scholar
  79. Tryjanowski P, Kuźniak S (2002) Population size and productivity of the white stork Ciconia ciconia in relation to common vole Microtus arvalis density. Ardea 90:213–217Google Scholar
  80. Tryjanowski P, Sparks TH (2008) The relationship between phenological traits and brood size of the white stork Ciconia ciconia in western Poland. Acta Oecol 33:203–206CrossRefGoogle Scholar
  81. Tryjanowski P, Sparks TH, Profus P (2009) Severe flooding causes a crash in production of white stork (Ciconia ciconia) chicks across Central and Eastern Europe. Basic Appl Ecol 10:387–392CrossRefGoogle Scholar
  82. van Noordwijk AJ, McCleery RH, Perrins CM (1995) Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J Anim Ecol 64:451–458CrossRefGoogle Scholar
  83. Vergara P, Aguirre JI, Fargallo JA, Dávila JA (2006) Nest-site fidelity and breeding success in white stork Ciconia ciconia. Ibis 148:672–677CrossRefGoogle Scholar
  84. Whitney P (1976) Population ecology of two sympatric species of subarctic microtine rodents. Ecol Monogr 46:85–104CrossRefGoogle Scholar
  85. Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690CrossRefGoogle Scholar
  86. Witman JD, Genovese SJ, Bruno JF, McLaughlin JW, Pavlin BI (2003) Massive prey recruitment and the control of rocky subtidal communities on large spatial scales. Ecol Monogr 73:441–462CrossRefGoogle Scholar
  87. Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall, Boca RatonGoogle Scholar
  88. Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–634PubMedCrossRefGoogle Scholar
  89. Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A meta-analysis of resource pulse–consumer interactions. Ecol Monogr 80:125–151CrossRefGoogle Scholar
  90. Yee DA, Juliano SA (2012) Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169:511–522PubMedCrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer Japan 2013

Authors and Affiliations

  • Jan Hušek
    • 1
  • Peter Adamík
    • 2
    • 3
  • Tomáš Albrecht
    • 4
    • 5
  • Jaroslav Cepák
    • 6
  • Wojciech Kania
    • 7
  • Eva Mikolášková
    • 8
  • Emil Tkadlec
    • 9
    • 10
  • Nils Chr. Stenseth
    • 1
  1. 1.Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
  2. 2.Museum of Natural HistoryOlomoucCzech Republic
  3. 3.Department of Zoology and Laboratory of Ornithology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  4. 4.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  5. 5.Department of ZoologyCharles University in PraguePragueCzech Republic
  6. 6.Bird Ringing CentreNational MuseumPragueCzech Republic
  7. 7.Ornithological Station, Museum and Institute of ZoologyPolish Academy of SciencesGdańskPoland
  8. 8.Agency for Nature Conservation and Landscape Protection of the Czech RepublicÚstí nad LabemCzech Republic
  9. 9.Department of Ecology and Environmental Sciences, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  10. 10.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicKoněšínCzech Republic

Personalised recommendations