Skip to main content
Log in

Comparison of genetic diversity in the two arctic–alpine plants Diapensia lapponica var. obovata (Diapensiaceae) and Empetrum nigrum var. japonicum (Empetraceae) between Sakhalin in Russian Far East and Jeju Island in Korea, the southernmost edge of their distribution range

  • Original article
  • Published:
Population Ecology

Abstract

We compared allozyme variation in the two arctic–alpine plants Diapensia lapponica var. obovata and Empetrum nigrum var. japonicum between Sakhalin Island in Russian Far East, within their range core, and the Korean island of Jeju, their world’s southernmost distribution. For D. lapponica var. obovata, Sakhalin populations harbored moderate levels of within-population genetic variation and low among-population divergence, whereas extremely low levels of within-population genetic diversity and high among-population differentiation were found in Jeju Island populations. In contrast, we found moderate levels of within-population variation and low among-population differentiation in E. nigrum var. japonicum in both northern populations (those of Sakhalin and an additional population from northern Japan) and Jeju Island populations. Under a similar scenario of immigration history of arctic–alpine plants on Jeju Island during the glacial periods of the Pleistocene and local persistence through glacial/interglacial cycles, the contrasting genetic structure between D. lapponica var. obovata and E. nigrum var. japonicum is mainly attributable to their different life-history, ecological, and demographic traits: (1) hermaphroditic versus monoecious, dioecious or polygamous, (2) seeds with no adaptations for long-distance dispersal versus berry-like drupes dispersed by animals and birds, and (3) a very small patch near the peak of Mt. Halla with a few hundred individuals versus a relatively continuous distribution around the peak of Mt. Halla with numerous individuals. From a conservation perspective, in situ and ex situ conservation measures should be strengthened for D. lapponica var. obovata on Jeju Island given their extreme rarity there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott RJ, Smith LC, Milne RI, Crawford RMM, Wolff K, Balfour J (2000) Molecular analysis of plant migration and refugia in the Arctic. Science 289:1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Aiken SG, Dallwitz MJ, Consaul LL, McJannet CL, Boles RL, Argus GW, Gillett JM, Scott PJ, Elven R, LeBlanc MC, Gillespie LJ, Brysting AK, Solstad H, Harris JG (2007) Flora of the Canadian Arctic Archipelago: descriptions, illustrations, identification, and information retrieval. NRC Research Press, National Research Council of Canada, Ottawa. http://nature.ca/aaflora/data

  • Albach DC, Schönswetter P, Tribsch A (2006) Comparative phylogeography of the Veronica alpina complex in Europe and North America. Mol Ecol 15:3269–3286

    Article  PubMed  CAS  Google Scholar 

  • Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28:819–825

    Article  Google Scholar 

  • Bell JNB, Tallis JH (1973) Biological flora of the British Isles: Empetrum nigrum L. J Ecol 61:289–305

    Article  Google Scholar 

  • Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quatern Sci Rev 27:2449–2455

    Article  Google Scholar 

  • Bergman P, Molau U, Holmgren B (1996) Micrometeorological impacts on insect activity and plant reproductive success in an alpine environment, Swedish Lapland. Arct Alpine Res 28:196–202

    Article  Google Scholar 

  • Birks HJB, Willis KJ (2008) Alpines, trees and refugia in Europe. Plant Ecol Divers 1:147–160

    Article  Google Scholar 

  • Casgrain P (2001) Permute! Version 3.4 alpha. Available from http://www.umontreal.ca/casgrain/en/telecharger/index.html

  • Cheliak WM, Pitel JP (1984) Technique for starch gel electrophoresis of enzyme from forest tree species. Information report PI-X-42. Petawawa National Forestry Institute, Chalk River, Ontario

  • Choi K-R (1998) The post-glacial vegetation history of the lowland in Korean Peninsula. Korean J Ecol 21:169–174

    Google Scholar 

  • Choi K (2001) Vegetation and climate history of the lowland on the Korean Peninsula. J Korean Phys Soc 39:762–765

    Google Scholar 

  • Choi H-S, Hong K-N, Chung J-M, Kang B-Y, Kim W-W (2004) Genetic diversity and spatial genetic structure of Empetrum nigrum var. japonicum in Mt. Halla. South Korea. J Korean For Soc 93:175–180 (in Korean with English summary)

    Google Scholar 

  • Chung C-H (2007) Vegetation response to climate change on Jeju Island, South Korea, during the last deglaciation based on pollen record. Geosci J 11:147–155

    Article  Google Scholar 

  • Chung MG, Kang SS (1994) Genetic variation and population structure in Korean populations of Eurya japonica (Theaceae). Am J Bot 81:1077–1082

    Article  Google Scholar 

  • Chung C-H, Lim HS, Yoon HI (2006) Vegetation and climate changes during the Late Pleistocene to Holocene inferred from pollen record in Jinju area, South Korea. Geosci J 10:423–431

    Article  Google Scholar 

  • Clayton JW, Tretiak DN (1972) Amine citrate buffers for pH control in starch gel electrophoresis. J Fisher Res Board Can 29:1169–1172

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptative responses to Quaternary climate change. Science 292:673–679

    Article  PubMed  CAS  Google Scholar 

  • DeChaine EG, Martin AP (2005) Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am J Bot 92:477–486

    Article  PubMed  CAS  Google Scholar 

  • Dolezal J, Altman J, Kopecky M, Cerny T, Janecek S, Bartos M, Petrik P, Srutek M, Leps J, Song J-S (2012) Plant diversity changes during the postglacial in East Asia: insights from forest refugia on Halla Volcano, Jeju Island. PLoS ONE 7:e33065

    Article  PubMed  CAS  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographic ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Fenster CB, Dudash MR (1994) Genetic considerations for plant population restoration and conservation. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning and implementation. Cambridge University Press, Cambridge, pp 34–62

    Chapter  Google Scholar 

  • Fujii N, Senni K (2006) Phylogeography of Japanese alpine plants: biogeographic importance of alpine region of Central Honshu in Japan. Taxon 55:43–52

    Article  Google Scholar 

  • Godt MJW, Johnson BR, Hamrick JL (1996) Genetic diversity and population size in four rare southern Appalachian plant species. Conserv Biol 10:796–805

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guitián J, Munilla I, Guitián P, López B (1994) Frugivory and seed dispersal by redwings Turdus iliacus in southeast Iceland. Ecography 17:314–320

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population level. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Haufler CH (1985) Enzyme variability and modes of evolution in Bommeria (Pteridaceae). Syst Bot 10:92–104

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequence of climatic oscillations in the Quaternary. Philos Trans R Soc B-Biol Sci 359:183–195

    Article  CAS  Google Scholar 

  • Hu FS, Hampe A, Petit RJ (2009) Paleoecology meets genetics: deciphering past vegetational dynamics. Front Ecol Environ 7:371–379

    Article  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Ikeda H, Senni K, Fujii N, Setoguchi H (2008) Survival and genetic divergence of an arctic-alpine plant, Diapensia lapponica subsp. obovata (Fr. Schm.) Hultén (Diapensiaceae), in the high mountains of central Japan during climatic oscillations. Plant Syst Evol 272:197–210

    Article  Google Scholar 

  • Im H-T (1992) Plant geographical study for the plant of Cheju. Korean J Pl Taxon 22:219–234 (in Korean with English summary)

    Google Scholar 

  • Kim J-H (2007) 104. Empetraceae Hook. & Lindl. In: Flora of Korea Editorial Committee (eds) The genera of vascular plants of Korea. Academy Publishing Co., Seoul, Republic of Korea, p 463

  • Kim K-J (2007) 108. Diapensiaceae Lindl. In: Flora of Korea Editorial Committee (eds) The genera of vascular plants of Korea. Academy Publishing Co., Seoul, Republic of Korea, p 481

  • Kong W-S (1998a) The distributional patterns of alpine plants of Mt. Halla on Jeju Island, Korea. J Korean Geogr Soc 33:191–208 (in Korean with English abstract)

    Google Scholar 

  • Kong W-S (1998b) The alpine and subalpine geoecology of the Korean Peninsula. Korean J Ecol 21:383–387

    Google Scholar 

  • Kong W-S (1999) Geoecological analysis of the Korea alpine and subalpine plants and landscapes. J Environ Sci 11:243–246

    Google Scholar 

  • Kong W-S, Watts D (1993) The plant geography of Korea with an emphasis on the alpine zones. Kluwer, Dordrecht

    Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2008) Causes of the genetic architecture of south- west European high mountain disjuncts. Plant Ecol Divers 1:217–228

    Article  Google Scholar 

  • Langella O (1999) Populations version 1.2.30. Available at: http://bioinformatics.org/~tryphon/populations/

  • Lee SW, Kim CS, Cho KJ, Choi WY (1997) Genetic variation in the endemic rare tree species Empetrum nigrum var. japonicum K. Koch. Korean J Breed 29:376–381 (in Korean with English summary)

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Marr KL, Allen GA, Hebda RJ (2008) Refugia in the Cordilleran ice sheet of western North America: chloroplast DNA diversity in the Arctic–alpine plant Oxyria digyna. J Biogeogr 35:1323–1334

    Article  Google Scholar 

  • Min T, Anderberg A (2005) Empetrum Linnaeus. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol. 14 (Apiaceae through Ericaceae). Science Press and Missouri Botanical Garden Press, Beijing, China and St. Louis, Missouri, USA, pp 455–456

  • Mitton JB, Linhart YB, Sturgeon KB, Hamrick JL (1979) Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J Hered 70:86–89

    CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa T, Ide Y (2011) Phylogeographic patterns of highland and lowland plant species in Japan. Alp Botany 121:49–61

    Article  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Qiu Y-X, Fu C-X, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol 59:225–244

    Article  PubMed  Google Scholar 

  • Schmitt T, Muster C, Schönswetter P (2010) Are disjunct alpine and arctic-alpine animal and plant species in the western Palearctic really “relicts of a cold past”? In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Berlin/Heidelberg, pp 239–252

  • Schönswetter P, Paun O, Tribsch A, Niklfeld H (2003) Out of the Alps: colonization of Northern Europe by East Alpine populations of the Glacier Buttercup Ranunculus glacialis L. (Ranunculaceae). Mol Ecol 12:3373–3381

    Article  PubMed  Google Scholar 

  • Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555

    Article  PubMed  Google Scholar 

  • Scott PJ, Day RT (1983) Diapensiaceae: a review of the taxonomy. Taxon 32:417–423

    Article  Google Scholar 

  • Semerikova SA, Semerikov VL, Lascoux M (2011) Post-glacial history and introgression in Abies (Pinaceae) species of the Russian Far East inferred from both nuclear and cytoplasmic markers. J Biogeogr 38:326–340

    Article  Google Scholar 

  • Shimono A, Ueno S, Gu S, Zhao X, Tsumura Y, Tang Y (2010) Range shifts of Potentilla fruticosa on the Qinghai–Tibetan Plateau during glacial and interglacial periods revealed by chloroplast DNA sequence variation. Heredity 104:534–542

    Article  PubMed  CAS  Google Scholar 

  • Skrede I, Eidesen PB, Portela RP, Brochmann C (2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas actopetala L.). Mol Ecol 15:1827–1840

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am Fern J 73:9–27

    Article  Google Scholar 

  • Stewart JR, Dalén L (2008) Is the glacial refugium concept relevant for northern species? A comment on Pruett and Winker 2005. Climatic Change 86:19–22

    Article  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671

    Article  PubMed  Google Scholar 

  • Suh MH, Koh KS, Ku YB, Kil JH, Choi TB, Suh SU, Oh HG, Lee IK, Na JG, Hyun JO, Koh JG (2001) Research on the conservation strategy for the endangered and reserved plants based on the ecological and genetic characteristics (I), NIER No. 2001-05-597. National Institute of Environmental Research, Incheon, Republic of Korea (in Korean)

  • van der Bank H, van der Bank M, van Wyk B-E (2001) A review of the use of allozyme electrophoresis in plant systematics. Biochem Syst Ecol 29:469–483

    Article  PubMed  Google Scholar 

  • Weeden NF, Wendel JF (1989) Genetics of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 46–72

    Chapter  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Xu D, Lu H, Wu N, Liu Z (2010) 30,000-Year vegetation and climate change around the East China Sea shelf inferred from a high-resolution pollen record. Quatern Int 227:53–60

    Article  Google Scholar 

  • Yeh FC, Yang R-C, Boyle T (1999) POPGENE version 1.31–Microsoft Windows-based free ware for population genetic analysis. Quick user’s guide. University of Alberta, Edmonton, Canada

  • Yi S, Kim S-J (2010) Vegetation changes in western central region of Korean Peninsula during the last glacial (ca. 21.1–26.1 cal kyr BP). Geosci J 14:1–10

    Article  CAS  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Beom Jin Shim and Myeong Soon Park for laboratory assistances; and Ann C. Chung for checking the English on an earlier version of the manuscript. This work is supported by the Korea Environmental Industry and Technology Institute (KEITI) of Eco-star project (project number 052-08-71 for “the development of technology for conservation and management of higher plants in Korea” to M.G.C. through to B.-Y.S.); the Basic Science Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Education, Science and Technology (KRF-2007-521-C00280 to M.G.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myong Gi Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, M.Y., López-Pujol, J., Moon, MO. et al. Comparison of genetic diversity in the two arctic–alpine plants Diapensia lapponica var. obovata (Diapensiaceae) and Empetrum nigrum var. japonicum (Empetraceae) between Sakhalin in Russian Far East and Jeju Island in Korea, the southernmost edge of their distribution range. Popul Ecol 55, 159–172 (2013). https://doi.org/10.1007/s10144-012-0348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-012-0348-z

Keywords

Navigation