Population Ecology

, Volume 54, Issue 1, pp 103–114 | Cite as

Genetic population structure of the paper wasp Polistes olivaceus (Hymenoptera: Vespidae) in Bangladesh

Original Article

Abstract

Dispersal triggers gene flow, which in turn strongly affects the ensuing genetic population structure of a species. Using nuclear microsatellite loci and mitochondrial DNA (mtDNA), we estimated the genetic population structure of the wasp Polistes olivaceus throughout Bangladesh. The level of population differentiation using nuclear markers (FST) appeared to be much lower than that estimated using mtDNA haplotype sequences (ФST), even after correcting for effective population size differences between the two markers. These results suggest a philopatric tendency, in which gynes disperse less than males. We observed no isolation by distance among the study populations at either the nuclear or mtDNA level, suggesting nonequilibrium between gene flow and drift as a result of very frequent interpopulation movement. For the nuclear markers, an individual assignment test showed no genetically and geographically distinct groups. Instead, phylogenetic analyses as well as a minimum spanning network using mtDNA haplotypes consistently revealed two distinct lineages. The distribution of haplotypes indicated western populations with a single lineage and offered clear evidence for restricted gene flow across the Jamuna–Padma–Upper Meghna river system. Mismatch distributions exhibited a unimodal distribution, which along with a starlike haplotype network, suggested a population expansion in lineage I but not in lineage II. Overall, these results suggest that gene flow among populations of P. olivaceus was affected by both female philopatry and a major river system across Bangladesh.

Keywords

Gene flow Geographical barrier Microsatellites Mitochondrial DNA Sex-biased dispersal 

References

  1. Alam SM (1958) Some interesting revelations about the nest of Polistes hebraeus Fabr. (Vespidae: Hymenoptera)—the common yellow wasp of India. Proc Zool Soc Calcutta 11:113–122Google Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522Google Scholar
  4. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Ann Biochem 196:80–83CrossRefGoogle Scholar
  5. Berghoff SM, Kronauer DJC, Edwards KJ, Franks NR (2008) Dispersal and population structure of a New World predator, the army ant Eciton burchellii. J Evol Biol 21:1125–1132PubMedCrossRefGoogle Scholar
  6. Björklund M (2003) Test for a population expansion after a drastic reduction in population size using DNA sequence data. Heredity 91:481–486PubMedCrossRefGoogle Scholar
  7. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239PubMedCrossRefGoogle Scholar
  8. Carmichael LE, Nagy JA, Larter NC, Strobeck C (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol Ecol 10:2787–2798PubMedGoogle Scholar
  9. Clémencet J, Viginier B, Doums C (2005) Hierarchical analysis of population genetic structure in the monogynous ant Cataglyphis cursor using microsatellite and mitochondrial DNA markers. Mol Ecol 14:3735–3744PubMedCrossRefGoogle Scholar
  10. Crochet PA (2000) Genetic structure of avian populations: allozymes revisited. Mol Ecol 9:1463–1469PubMedCrossRefGoogle Scholar
  11. Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, New YorkGoogle Scholar
  12. Davis SK, Strassmann JE, Hughes C, Pletscher LS, Templeton AR (1990) Population structure and kinship in Polistes (Hymenoptera, Vespidae): an analysis using ribosomal DNA and protein electrophoresis. Evolution 44:1242–1253CrossRefGoogle Scholar
  13. Doums C, Cabrera H, Peeters C (2002) Population genetic structure and male-biased dispersal in the queenless ant Diacamma cyaneiventre. Mol Ecol 11:2251–2264PubMedCrossRefGoogle Scholar
  14. Eriksson J, Hohmann G, Boesch C, Vigilant L (2004) Rivers influence the population genetic structure of bonobos (Pan paniscus). Mol Ecol 13:3425–3435PubMedCrossRefGoogle Scholar
  15. Excoffier L, Schneider S (1999) Why hunter–gatherer populations do not show signs of Pleistocene demographic expansions. Proc Natl Acad Sci USA 96:10597–10602PubMedCrossRefGoogle Scholar
  16. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50Google Scholar
  18. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  19. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  20. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genetics, University of Washington, SeattleGoogle Scholar
  21. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  22. Goodisman MAD, Matthews RW, Crozier RH (2001) Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Mol Ecol 10:1423–1432PubMedCrossRefGoogle Scholar
  23. Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www.unil.ch/izea/softwares/fstat.html
  24. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  25. Hagler JR, Jackson CG (2001) Methods for marking insects: current techniques and future prospects. Annu Rev Entomol 46:511–543PubMedCrossRefGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  27. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638PubMedGoogle Scholar
  28. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  29. Hoffman EA, Kovacs JL, Goodisman MAD (2008) Genetic structure and breeding system in a social wasp and its social parasite. BMC Evol Biol 8:239–251PubMedCrossRefGoogle Scholar
  30. Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  31. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  32. Johnson RN, Starks TP (2004) A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the Northeastern United States. Ann Entomol Soc Am 97:732–737CrossRefGoogle Scholar
  33. Keller L (1993) The assessment of reproductive success of queens in ants and other social insects. Oikos 67:177–180CrossRefGoogle Scholar
  34. King PS (1987) Macro- and microgeographic structure of a spatially subdivided beetle species in nature. Evolution 41:401–416CrossRefGoogle Scholar
  35. Klahn JE (1979) Philopatric and nonphilopatric foundress associations in the social wasp Polistes fuscatus. Behav Ecol Sociobiol 5:417–424CrossRefGoogle Scholar
  36. Kudô K, Tsujita S, Tsuchida K, Goi W, Yamane S, Mateus S, Itô Y, Miyano S, Zucchi R (2005) Stable relatedness structure of the large-colony swarm-founding wasp Polybia paulista. Behav Ecol Sociobiol 58:27–35CrossRefGoogle Scholar
  37. Kyle CJ, Strobeck C (2002) Connectivity of peripheral and core populations of North American wolverines. J Mammal 83:1141–1150CrossRefGoogle Scholar
  38. Loaiza JR, Scott ME, Bermingham E, Rovira J, Conn JE (2010) Evidence for Pleistocene population divergent and expansion of Anopheles albimanus in southern Central America. J Trop Med Hyg 82:156–164CrossRefGoogle Scholar
  39. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  40. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  41. Meirmans PG, Hedrick PW (2011) Assessing population structure: F ST and related measures. Mol Ecol Resour 11:5–18PubMedCrossRefGoogle Scholar
  42. Michalakis Y, Excoffier L (1996) A genetic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064PubMedGoogle Scholar
  43. Okello JBA, Nyakaanal S, Masembe C, Siegismund HR, Arctander P (2005) Mitochondrial DNA variation of the common hippopotamus: evidence for a recent population expansion. Heredity 95:206–215PubMedCrossRefGoogle Scholar
  44. Paetkau D, Amstrup SC, Born EW, Calvert W, Derocher AE, Garner GW, Messier F, Stirling I, Taylor MK, Wiig Ø, Strobeck C (1999) Genetic structure of the world’s polar bear populations. Mol Ecol 8:1571–1584PubMedCrossRefGoogle Scholar
  45. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  46. Perrin N, Mazalov V (2000) Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat 155:116–127PubMedCrossRefGoogle Scholar
  47. Pickett KL, Tolman GL, Wheeler WC, Wenzel JW (2005) Parsimony overcomes statistical inconsistency with the addition of more data from the same gene. Cladistics 21:438–445CrossRefGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  49. Queller DC, Strassmann JE, Hughes CR (1992) Genetic relatedness and population structure in primitively eusocial wasps in the genus Mischocyttarus (Hymenoptera: Vespidae). J Hymenopt Res 1:81–89Google Scholar
  50. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  51. Riley JR (1989) Remote sensing in entomology. Annu Rev Entomol 34:24–71CrossRefGoogle Scholar
  52. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  53. Rosengren R, Pamilo P (1983) The evolution of polygyny and polydomy in mound-building Formica ants. Acta Entomol Fenn 42:65–77Google Scholar
  54. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  55. Rousset F (2008) GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. http://kimura.univ-montp2.fr/~rousset/Genepop.htm
  56. Saigo T, Tsuchida K (2004) Queen and worker policing in monogynous and monandrous colonies of a primitively eusocial wasp. Proc R Soc Lond B 271:S509–S512CrossRefGoogle Scholar
  57. Saigo T, Tsuchida K (2010) Nine newly designed polymorphic microsatellite loci for the Japanese paper wasp, Polistes chinensis antennalis (Hymenoptera: Vespidae). Appl Entomol Zool 45:575–577CrossRefGoogle Scholar
  58. Sanetra M, Crozier RH (2003) Patterns of population subdivision and gene flow in the ant Nothomyrmecia macrops reflected in microsatellite and mitochondrial DNA markers. Mol Ecol 12:2281–2295PubMedCrossRefGoogle Scholar
  59. Shoemaker DD, DeHeer CJ, Krieger MJB, Ross KG (2006) Population genetics of the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. Ann Entomol Soc Am 99:1213–1233CrossRefGoogle Scholar
  60. Slatkin M (1985) Gene flow in natural-populations. Annu Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  61. Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  62. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142PubMedCrossRefGoogle Scholar
  63. Strassmann JE, Queller DC, Solís CR (1995) Genetic relatedness and population structure in the social wasp, Mischocyttarus mexicanus (Hymenoptera: Vespidae). Insect Soc 42:379–383CrossRefGoogle Scholar
  64. Strassmann JE, Barefield K, Solís CR, Hughes CR, Queller DC (1997) Trinucleotide microsatellite loci for a social wasp, Polistes. Mol Ecol 6:97–100PubMedCrossRefGoogle Scholar
  65. Sundström L, Keller L, Chapuisat M (2003) Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 57:1552–1561PubMedGoogle Scholar
  66. Telfer PT, Souquière S, Clifford SL, Abernethy KA, Bruford MW, Disotell TR, Sterner KN, Roques P, Marx PA, Wickings EJ (2003) Molecular evidence for deep phylogenetic divergence in Mandrillus sphinx. Mol Ecol 12:2019–2024PubMedCrossRefGoogle Scholar
  67. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  68. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117PubMedCrossRefGoogle Scholar
  69. Tsuchida K (2011) Social structures and conflict resolution in primitively eusocial Polistes wasps. In: Inoue-Murayama M, Kawamura S, Weiss A (eds) From genes to animal behavior. Springer, Japan, pp 83–110CrossRefGoogle Scholar
  70. Tsuchida K, Saigo T, Nagata N, Tsujita S, Takeuchi K, Miyano S (2003a) Queen-worker conflicts over male production and sex allocation in a primitively eusocial wasp. Evolution 57:2365–2373PubMedGoogle Scholar
  71. Tsuchida K, Saigo T, Tsujita S, Takeuchi K, Ito N, Sugiyama M (2003b) Polymorphic microsatellite loci for the Japanese paper wasp, Polistes chinensis antennalis (Hymenoptera: Vespidae). Mol Ecol Notes 3:384–386CrossRefGoogle Scholar
  72. Turillazzi S, Dapporto L, Pansolli C, Boulay R, Dani FR, Moneti G, Pieraccini G (2006) Habitually used hibernation sites of paper wasps are marked with venom and cuticular peptides. Curr Biol 16:R530–R532PubMedCrossRefGoogle Scholar
  73. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  74. Vitalis R (2002) Sex-specific genetic differentiation and coalescence times: estimating sex-biased dispersal rates. Mol Ecol 11:125–138PubMedCrossRefGoogle Scholar
  75. Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106CrossRefGoogle Scholar
  76. Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431Google Scholar
  77. Wright S (1940) Breeding structure of populations in relation to speciation. Am Nat 74:232–248CrossRefGoogle Scholar
  78. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar
  79. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2011

Authors and Affiliations

  1. 1.Laboratory of Insect Ecology, United Graduate School of Agricultural ScienceGifu UniversityGifuJapan
  2. 2.Laboratory of Insect Ecology, Faculty of Applied Biological SciencesGifu UniversityGifuJapan

Personalised recommendations