Population Ecology

, Volume 53, Issue 1, pp 119–129 | Cite as

Vulnerability of wild American ginseng to an extreme early spring temperature fluctuation

  • Sara SoutherEmail author
  • James B. McGraw
Original Article


Frost events in natural plant populations can have dramatic demographic consequences. For many plant species, spring emergence occurs when probability of damaging frost is low. Climate change, however, may alter weather patterns such that the environmental cues signaling spring emergence no longer coincide with periods of low frost risk, rendering plant populations susceptible to damaging frost events more frequently than in the past. In 2007, a spring freeze occurred in the eastern United States after a period of unusually warm temperatures. We took advantage of a long-term demographic dataset for American ginseng (Panax quinquefolius L.) to examine among and within population patterns of frost damage, as well as the effects of the frost on ginseng demography. Higher temperatures prior to the frost event increased the probability and extent of frost damage at the population level. Within populations, large plants tended to be damaged more frequently than smaller plants. Survival, growth, and reproduction were reduced in frost-damaged plants compared to undamaged plants in the year of the frost event, and negative effects on growth and reproduction persisted the following year. For plants such as ginseng, increases in frost frequency will negatively impact population growth, and likely have serious ramifications for long-term population viability.


Climate change Demography Frost Panax Winter warming 



We thank J. Boyzcuk, Z. Bradford, M. Guido, A. Hanna, M. Kaproth, A. Kenyon, C. Maloy, E. Mooney, and K. Wixted for their work collecting demographic data. Additionally, we would like to thank the landowners and land-managers that generously grant access to the ginseng populations that we census. Finally, we are grateful to the Handling Editor and two anonymous reviewers for their helpful comments. This research was funded by NSF LTREB grant DEB-0613611.


  1. Aitken SN, Adams WT (1997) Spring cold hardiness under strong genetic control in Oregon populations of Pseudotsuga menziesii var. menziesii. Can J For Res 27:1773–1780CrossRefGoogle Scholar
  2. Anderson RC, Fralish JS, Armstrong JE, Benjamin PK (1993) The ecology and biology of Panax quinquefolium L. (Araliaceae) in Illinois. Am Midl Nat 129:357–372CrossRefGoogle Scholar
  3. Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309CrossRefGoogle Scholar
  4. Bannister P, Maegli T, Dickinson K, Halloy S, Knight A, Lord J, Mark A, Spencer K (2005) Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 144:245–256. doi: 10.1007/s00442-005-0087-3 CrossRefPubMedGoogle Scholar
  5. Bañuelos M-J, Obeso J-R (2004) Resource allocation in the dioecious shrub Rhamnus alpinus: the hidden cost of reproduction. Evol Ecol Res 6:397–413Google Scholar
  6. Bélanger G, Rochette P, Castonguay Y, Bootsma A, Mongrain D, Ryan DAJ (2002) Climate change and winter survival of perennial forage crops in eastern Canada. Agron J 94:1120–1130CrossRefGoogle Scholar
  7. Beuker E (1994) Adaptation to climatic changes of the timing of bud burst in populations of Pinus sylvestris L. and Picea abies (L.) Karst. Tree Physiol 14:961–970. doi: 10.1093/treephys/23.8.517 PubMedGoogle Scholar
  8. Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704CrossRefPubMedGoogle Scholar
  9. Bustamante E, Búrquez A (2008) Effects of plant size and weather on the flowering phenology of the organ pipe cactus (Stenocereus thurberi). Ann Bot 102:1019–1030. doi: 10.1093/aob/mcn194 CrossRefPubMedGoogle Scholar
  10. Cannell MGR, Smith RI (1984) Spring frost damage on young Picea sitchensis 2. Predicted dates of budburst and probability of frost damage. Forestry 57:177–197CrossRefGoogle Scholar
  11. Cannell MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191CrossRefGoogle Scholar
  12. Charron D, Gagnon D (1991) The demography of northern populations of Panax quinquefolium (American ginseng). J Ecol 79:431–445CrossRefGoogle Scholar
  13. Ducousso A, Petit D, Valero M, Vernet P (1990) Genetic-variation between and within populations of a perennial grass Arrhenatherum elatius. Heredity 65:179–188. doi: 10.1038/hdy.1990.86 CrossRefGoogle Scholar
  14. Ducousso A, Guyon JP, Kremer A (1996) Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Ann Des Sci For 53:775–782. doi: 10.1051/forest:19960253 CrossRefGoogle Scholar
  15. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger JM, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367. doi: 10.1002/joc.1733 CrossRefGoogle Scholar
  16. Eccel E, Roberto R, Caffarra A, Crisci A (2009) Risk of spring frost to apple production under future climate scenarios: the role phenological acclimation. Int J Biometeorol 53:1254–1432. doi: 10.1007/s00484-009-0213-8 Google Scholar
  17. Farnsworth EJ, Nunez-Farfan J, Careaga SA, Bazzaz FA (1995) Phenology and growth of three temperate forest life forms in response to artificial soil warming. J Ecol 83:967–977CrossRefGoogle Scholar
  18. Galen C (1993) Cost of reproduction in Polemonium viscosum: phenotypic and genetic approaches. Evolution 47:1073–1079CrossRefGoogle Scholar
  19. Ghelardini L, Falusi M, Santini A (2006) Variation in timing of bud-burst of Ulmus minor clones from different geographical origins. Can J For Res 36:1982–1991. doi: 10.1139/X06-092 CrossRefGoogle Scholar
  20. Green DS (2007) Controls of growth phenology vary in seedlings of three, co-occurring ecologically distinct northern conifers. Tree Physiol 27:1197–1205. doi: 10.1093/treephys/27.8.1197 PubMedGoogle Scholar
  21. Gu L, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freezes: increased cold damage in a warming world? Bioscience 58:253–262. doi: 10.1111/j.1365-2486.2009.01864.x CrossRefGoogle Scholar
  22. Hall MC, Willis JH (2006) Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations. Evolution 60:2466–2477. doi: 10.1554/05-688.1 PubMedGoogle Scholar
  23. Hall D, Luquez V, Garcia VM, St Onge KR, Jansson S, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European Aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860. doi: 10.1111/j.1558-5646.2007.00230.x CrossRefPubMedGoogle Scholar
  24. Hänninen H (1991) Does climatic warming increase the risk of frost damage in northern trees. Plant Cell Environ 14:449–454. doi: 10.1093/treephys/20.17.1175 CrossRefGoogle Scholar
  25. Hänninen H (1996) Effects of climatic warming on northern trees: testing the frost damage hypothesis with meteorological data from provenance transfer experiments. Scand J For Res 11:17–25. doi: 10.1080/02827589609382908 CrossRefGoogle Scholar
  26. Hänninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898. doi: 10.1093/treephys/27.2.291 PubMedGoogle Scholar
  27. Howe GT, Aitken SN, Neale DB, Jermstad D, Wheeler NC, Chen THH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266. doi: 10.1139/b03-141 CrossRefGoogle Scholar
  28. Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463. doi: 10.1046/j.1461-0248.2000.00165.x CrossRefGoogle Scholar
  29. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. doi: 10.1890/06-2128.1 CrossRefPubMedGoogle Scholar
  30. Inouye DW, Morales MA, Dodge GJ (2002) Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Nina, in the context of climate change. Oecologia 130:543–550. doi: 10.1007/s00442-001-0835-y CrossRefGoogle Scholar
  31. Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009) Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob Chang Biol 15:837–849. doi: 10.1111/j.1365-2486.2008.01690.x CrossRefGoogle Scholar
  32. Jönsson AM, Linderson ML, Stjernquist I, Schlyter P, Barring L (2004) Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Glob Planet Chang 44:195–207. doi: 10.1016/j.gloplacha.2004.06.012 CrossRefGoogle Scholar
  33. Kalisz S (1986) Variable selection on the timing of germination in Collinsia verna (Scrophulariacea). Evolution 40:479–491CrossRefGoogle Scholar
  34. Kellomäki S, Hänninen H, Kolstrom M (1995) Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecol Appl 5:42–52. doi: 10.2307/1942050 CrossRefGoogle Scholar
  35. Kramer K (1994) A modeling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in the Netherlands and Germany. Plant Cell Environ 17:367–377. doi: 10.1111/j.1365-3040.1994.tb00305.x CrossRefGoogle Scholar
  36. Kramer K, Friend A, Leinonen I (1996) Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests. Clim Res 7:31–41. doi: 10.1007/s004840000066 CrossRefGoogle Scholar
  37. Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58. doi: 10.1007/s10144-005-0242-z CrossRefGoogle Scholar
  38. Leinonen I (1996) Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scand J For Res 11:122–128. doi: 10.1080/02827589609382919 CrossRefGoogle Scholar
  39. Leinonen I, Hänninen H (2002) Adaptation of the timing of bud burst of Norway spruce to temperate and boreal climates. Silva Fenn 36:695–701Google Scholar
  40. Lewis WH, Zenger VE (1983) Breeding systems and fecundity in the American ginseng Panax quinquefolium (Araliaceae). Am J Bot 70:466–468CrossRefGoogle Scholar
  41. Li P, Beaulieu J, Bousquet J (1997) Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca). Can J For Res 27:189–198CrossRefGoogle Scholar
  42. Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20:1175–1182. doi: 10.1093/treephys/20.17.1175 PubMedGoogle Scholar
  43. McGraw JB, Furedi MA (2005) Deer browsing and population viability of a forest understory plant. Science 307:920–922. doi: 10.1126/science.1107036 CrossRefPubMedGoogle Scholar
  44. McGraw JB, Garbutt K (1990) Demographic growth analysis. Ecology 71:1199–1204CrossRefGoogle Scholar
  45. McGraw JB, Sanders SM, Van der Voort M (2003) Distribution and abundance of Hydrastis canadensis L. (Ranunculaceae) and Panax quinquefolius L. (Araliaceae) in the central Appalachian region. J Torrey Bot Soc 130:62–69CrossRefGoogle Scholar
  46. Menges E (1990) Population viability analysis for an endangered plant. Conserv Biol 4:52–62CrossRefGoogle Scholar
  47. Miller TE (1987) Effects of emergence time on survival and growth in an early old-field plant community. Oecologia 72:272–278. doi: 10.1007/BF00379278 CrossRefGoogle Scholar
  48. Miller TE, Winn AA, Schemske DW (1994) The effects of density and spatial distribution on selection for emergence time in Prunella vulgaris (Lamiaceae). Am J Bot 81:1–6CrossRefGoogle Scholar
  49. Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology 89:332–341. doi: 10.1073/pnas.0806446105 CrossRefPubMedGoogle Scholar
  50. Mooney E, McGraw JB (2009) Relationship between age, size, and reproduction in populations of American ginseng, Panax quinquefolius (Araliaceae), across a range of harvest pressures. Ecoscience 16:84–94. doi: 10.2980/16-1-3168 CrossRefGoogle Scholar
  51. Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis, 2nd edn. Sinauer, SunderlandGoogle Scholar
  52. Murray MB, Smith RI, Leith ID, Fowler D, Lee HSJ, Friend AD, Jarvis PG (1994) Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiol 14:691–706PubMedGoogle Scholar
  53. Myking T (1999) Winter dormancy release and budburst in Betula pendula Roth and B. pubescens Ehrh. ecotypes. Phyton Ann Rei Bot A 39:139–145Google Scholar
  54. Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704. doi: 10.1093/treephys/15.11.697 PubMedGoogle Scholar
  55. Ögren E (1997) Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol 17:47–51. doi: 10.1093/treephys/17.1.47 PubMedGoogle Scholar
  56. Ögren E (2001) Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments. Physiol Plant 112:71–77. doi: 10.1034/j.1399-3054.2001.1120110.x CrossRefPubMedGoogle Scholar
  57. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872. doi: 10.1111/j.1365-2486.2007.01404.x CrossRefGoogle Scholar
  58. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  59. Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424CrossRefGoogle Scholar
  60. Pepin NC (1997) Scenarios of future climate change: effects on frost occurrence and severity in the maritime uplands of northern England. Geogr Ann Ser A 79A:121–137CrossRefGoogle Scholar
  61. Pillar GJ, Meekings JS (1997) The acquisition and utilization of carbon in early spring by kiwifruit shoots. Ann Bot 79:573–581CrossRefGoogle Scholar
  62. Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Ann Rev Ecol Syst 16:179–214. doi: 10.1146/ CrossRefGoogle Scholar
  63. Rigby JR, Porporato A (2008) Spring frost risk in a changing climate. Geophys Res Lett 35. Article Number L12703. doi: 10.1029/2008GL033955
  64. Robbins CS (2000) Comparative analysis of management regimes and medicinal plant trade monitoring mechanisms for American ginseng and goldenseal. Conserv Biol 14:1422–1434CrossRefGoogle Scholar
  65. Ross MA, Harper JL (1972) Occupation of biology space during seedling establishment. J Ecol 60:77–88CrossRefGoogle Scholar
  66. Savolainen O, Bokma F, Garcia-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For Ecol Manag 197:79–89. doi: 10.1016/j.foreco.2004.05.006 CrossRefGoogle Scholar
  67. Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends of spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41–51. doi: 10.1007/s00704-002-0704-6 CrossRefGoogle Scholar
  68. Schlessman MA (1985) Floral biology of American ginseng (Panax quinquefolium). Bull Torrey Bot Club 112:129–133CrossRefGoogle Scholar
  69. Schooley J, Proctor JTA (2003) Freeze damage to North American ginseng. Horttechnology 13:697–701Google Scholar
  70. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern hemisphere. Glob Chang Biol 12:343–351. doi: 10.1111/j.1365-2486.2005.01097.x CrossRefGoogle Scholar
  71. Søgaard G, Johnsen Ø, Nilsen J, Junttila O (2008) Climatic control of bud burst in young seedlings of nine provenances of Norway spruce. Tree Physiol 28:311–320. doi: 10.1093/treephys/28.2.311 PubMedGoogle Scholar
  72. Solomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change: the physical science basis of climate change. Climate Change 2007, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  73. Stratton DA (1992) Life-cycle components of selection in Erigeron annuus: I. Phenotypic selection. Evolution 46:92–106CrossRefGoogle Scholar
  74. Van der Toorn J, Pons TL (1988) Establishment of Plantago lanceolata L. and Plantago major L. among Grass. II. Shade tolerance of seedlings and selection on time of germination. Oecologia 76:341–347Google Scholar
  75. Van der Voort ME, Bailey B, Samuel DE, McGraw JB (2003) Recovery of populations of goldenseal (Hydrastis canadensis L.) and American ginseng (Panax quinquefolius L.) following harvest. Am Midl Nat 149:282–292CrossRefGoogle Scholar
  76. Verdú M, Traveset A (2005) Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology 86:1385–1394. doi: 10.1890/04-1647 CrossRefGoogle Scholar
  77. Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009a) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res 39:1259–1269. doi: 10.1139/X09-054 CrossRefGoogle Scholar
  78. Vitasse Y, Delzon S, Dufrêne E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009b) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744. doi: 10.1016/j.agrformet.2008.10.019 CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology and Springer 2010

Authors and Affiliations

  1. 1.Department of BiologyWest Virginia UniversityMorgantownUSA

Personalised recommendations