Skip to main content
Log in

Predation as a probable mechanism relating winter weather to population dynamics in a North American porcupine population

  • Original Article
  • Published:
Population Ecology

Abstract

An abundance index of an eastern Quebec population of North American porcupines (Erethizon dorsatum) has cycled with superimposed periodicities of 11 and 22 years from 1868 to 2000. This cycle closely followed 11- and 22-year cycles in solar irradiance and local weather (e.g., winter precipitation and spring temperature), generating the hypothesis that solar activity may affect porcupine abundance through effects on local weather. We investigated the mechanisms linking porcupine abundance to local weather conditions using a 6-year study (2000–2005) involving individual mark-recapture, radio tracking, seasonal survival analyses and identification of mortality causes. Summer (May–August) survival was high and constant over the study period, whereas winter (August–May) survival was lower and varied during the duration of our study. Variations in local winter precipitation explained 89% of the variation in winter survival. Porcupine predation rates appeared strongly related to snow conditions; 95% of depredated porcupines were killed when snow was covering the ground, and predation rates were higher in years with increased winter precipitation. Our data thus support the hypothesis that changes in predation rates under different snow conditions were the mechanism relating climate to porcupine population dynamics, via modifications of the local predator–prey interactions and impacts on porcupine winter survival. Our study adds to the growing body of evidence supporting an effect of climate on predator–prey processes. Also, it identifies one possible mechanism involved in the relationship between solar irradiance and porcupine population cycles observed at this study site over a 130-year period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berteaux D, Stenseth NC (2006) Measuring, understanding and projecting the effects of large-scale climatic variability on mammals. Clim Res 32:95–97

    Article  Google Scholar 

  • Berteaux D, Klvana I, Trudeau C (2005) Spring-to-fall mass gain in a northern population of North American porcupines. J Mammal 86:514–519

    Article  Google Scholar 

  • Berteaux D, Humphries MM, Krebs CJ, Lima M, McAdam AG, Pettorelli N, Reale D, Saitoh T, Tkadlec E, Weladji RB, Stenseth NC (2006) Constraints to projecting the effects of climate change on mammals. Clim Res 32:151–158

    Article  Google Scholar 

  • Boutin S, Krebs CJ, Boonstra R, Dale MRT, Hannon SJ, Martin K, Sinclair ARE (1995) Population-changes of the vertebrate community during a snowshoe hare cycle in Canada boreal forest. Oikos 74:69–80

    Article  Google Scholar 

  • Bowman J, Donovan D, Rosatte RC (2006) Numerical response of fishers to synchronous prey dynamics. J Mammal 87:480–484

    Article  Google Scholar 

  • Bulmer MG (1974) A statistical analysis of the 10-year cycle in Canada. J Anim Ecol 43:701–718

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Charlesworth B (1994) Evolution in age-structured populations, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Choquet R, Reboulet A-M, Pradel R, Gimenez O, Lebreton J-D (2003) User’s manual for U-CARE, Mimeographed document, CEFE/CNRS, Montpellier (ftp://ftp.cefe.cnrs-mop.fr/biom/Soft-CR)

  • Choquet R, Reboulet A-M, Pradel R, Gimenez O, Lebreton JD (2004) M-SURGE: new software specifically designed for multistate capture recapture models. Anim Biodivers Conserv 27:207–215

    Google Scholar 

  • Cook JG, Irwin LL, Bryant LD, Riggs RA, Thomas JW (1998) Relations of forest cover and condition of elk: a test of the thermal cover hypothesis in summer and winter. Wildl Monogr 141:5–61

    Google Scholar 

  • Crespin L, Verhagen R, Stenseth NC, Yoccoz NG, Prevot-Julliard AC, Lebreton JD (2002) Survival in fluctuating bank vole populations: seasonal and yearly variations. Oikos 98:467–479

    Article  Google Scholar 

  • Eberhardt LL (2002) A paradigm for population analysis of long-lived vertebrates. Ecology 83:2841–2854

    Article  Google Scholar 

  • Etcheverry P, Crete M, Ouellet JP, Rivest LP, Richer MC, Beaudoin C (2005) Population dynamics of snowshoe hares in relation to furbearer harvest. J Wildl Manage 69:771–781

    Article  Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toiego C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Gauthier G, Pradel R, Menu S, Lebreton JD (2001) Seasonal survival of Greater Snow Geese and effect of hunting under dependence in sighting probability. Ecology 82:3105–3119

    Article  Google Scholar 

  • Haim A, van Aarde RJ, Skinner JD (1992) Burrowing and huddling in newborn porcupine: the effect on thermoregulation. Physiol Behav 52:247–250

    Article  CAS  PubMed  Google Scholar 

  • Halfpenny JC, Ozanne RD (1989) Winter, an ecological handbook. Johnson, Boulder

    Google Scholar 

  • Hebblewhite M (2005) Predation by wolves interacts with the North Pacific Oscillation (NPO) on a western North American elk population. J Anim Ecol 74:226–233

    Article  Google Scholar 

  • Huggard DJ (1993) Effect of snow depth on predation and scavenging by grey wolves. J Wildl Manage 57:382–388

    Article  Google Scholar 

  • Hull D (1973) Thermoregulation in young mammals. In: Whittow GC (ed) Comparative physiology of temperature regulation. Special aspects of thermoregulation, vol 3. Academic, New York, pp 167–200

    Google Scholar 

  • Jedrzejewski W, Schmidt K, Theuerkauf J, Jedrzejewska B, Selva N, Zub K, Szymura L (2002) Kill rates and predation by wolves on ungulate populations in Bialowieza Primeval Forest (Poland). Ecology 83:1341–1356

    Google Scholar 

  • Keith LB, Cary JR (1991) Mustelid, squirrel, and porcupine population trends during a snowshoe hare cycle. J Mammal 72:373–378

    Article  Google Scholar 

  • Keith LB, Cary JR, Rongstad OJ, Brittingham MC (1984) Demography and ecology of a declining snowshoe hare population. Wildl Monogr 90:1–43

    Google Scholar 

  • Klvana I, Berteaux D, Cazelles B (2004) Porcupine feeding scars and climatic data show ecosystem effects of the solar cycle. Am Nat 164:283–297

    Article  PubMed  Google Scholar 

  • Krebs CJ (2001) What drives the 10-year cycle of snowshoe hares? Bioscience 51:25–35

    Article  Google Scholar 

  • Krebs CJ, Berteaux D (2006) Problems and pitfalls in relating climate variability to population dynamics. Clim Res 32:143–149

    Article  Google Scholar 

  • Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM, Dale MRT, Martin K, Turkington R (1995) Impact of food and predation on the snowshoe hare cycle. Science 269:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Krebs CJ, Boutin S, Boonstra R (2001) Ecosystem dynamics of the boreal forest: the Kluane project. Oxford University Press, New York

    Google Scholar 

  • Langvatn R, Albon SD, Burkey T, Clutton-Brock TH (1996) Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J Anim Ecol 65:653–670

    Article  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lima M, Stenseth N, Jaksic FM (2002) Population dynamics of a South American rodent: seasonal structure interacting with climate, density dependence and predator effects. Proc R Soc Lond B 269:2579–2586

    Article  Google Scholar 

  • Lindstrom ER, Hornfeldt B (1994) Vole cycles, snow depth and fox predation. Oikos 70:156–160

    Article  Google Scholar 

  • Loison A, Langvatn R (1998) Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116:489–500

    Article  Google Scholar 

  • Loison A, Gaillard JM, Houssin H (1994) New insight on survivorship of female chamois (Rupicapra rupicapra) from observation of marked animals. Can J Zool 72:591–597

    Article  Google Scholar 

  • Morin P, Berteaux D, Klvana I (2005) Hierarchical habitat selection by North American porcupines in southern boreal forest. Can J Zool 83:1333–1342

    Article  Google Scholar 

  • Murray DL, Boutin S (1991) The influence of snow on lynx and coyote movements—does morphology affect behavior? Oecologia 88:463–469

    Google Scholar 

  • Owen-Smith N, Mason DR, Ogutu JO (2005) Correlates of survival rates for 10 African ungulate populations: density, rainfall and predation. J Anim Ecol 74:774–788

    Article  Google Scholar 

  • Patterson BR, Benjamin LK, Messier F (1998) Prey switching and feeding habits of eastern coyotes in relation to snowshoe hare and white-tailed deer densities. Can J Zool 76:1885–1897

    Article  Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339

    Article  Google Scholar 

  • Post E, Peterson RO, Stenseth NC, McLaren BE (1999) Ecosystem consequences of wolf behavioural response to climate. Nature 401:905–907

    Article  CAS  Google Scholar 

  • Poulin JF, Jolicoeur H, Canac-Marquis P, Larivière S (2006) Investigation sur les facteurs à l’origine de la hausse de la récolte de pékans (Martes pennanti) au Québec depuis 1984. Ministère des Ressources Naturelles et de la Faune, Direction du développement de la faune et Université du Québec à Rimouski, Département de biologie et des sciences de la santé, Quebec (in French)

  • Powell RA (1993) The fisher. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Root TL, Schneider SH (1995) Ecology and climate—research strategies and implications. Science 269:334–341

    Article  CAS  PubMed  Google Scholar 

  • Roze U (1984) Winter foraging by individual porcupines. Can J Zool 62:2425–2428

    Article  Google Scholar 

  • Roze U (2009) The North American porcupine, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Adv Ecol Res 35:185–209

    Article  Google Scholar 

  • Sala E (2006) Top predators provide insurance against climate change. Trends Ecol Evol 21:479–480

    Article  PubMed  Google Scholar 

  • Sandvik H, Coulson T, Saether BE (2008) A latitudinal gradient in climate effects on seabird demography: results from interspecific analyses. Glob Chang Biol 14:703–713

    Article  Google Scholar 

  • Schemper M (1990) The explained variation in proportional hazards regression. Biometrika 77:216–218

    Article  Google Scholar 

  • Schmitz O (2003) Ecosystem responses to global climate change: moving beyond color mapping. Bioscience 53:1199–1205

    Article  Google Scholar 

  • Sinclair ARE, Gosline JM, Holdsworth G, Krebs CJ, Boutin S, Smith JNM, Boonstra R, Dale M (1993) Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am Nat 141:173–198

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, New York

    Google Scholar 

  • Stefan CI, Krebs CJ (2001) Reproductive changes in a cyclic population of snowshoe hares. Can J Zool 79:2101–2108

    Article  Google Scholar 

  • Stenseth NC, Chan K-S, Tong H, Boonstra R, Boutin S, Krebs CJ, Post E, O’Donoghue M, Yoccoz NG, Forchhammer MC, Hurrell JW (1999) Common dynamic structure of Canada lynx populations within three climatic regions. Science 285:1071–1073

    Article  CAS  PubMed  Google Scholar 

  • Stenseth NC, Shabbar A, Chan KS, Boutin S, Rueness EK, Ehrich D, Hurrell JW, Lingjaerde OC, Jakobsen KS (2004) Snow conditions may create an invisible barrier for lynx. Proc Natl Acad Sci USA 101:10632–10634

    Article  CAS  PubMed  Google Scholar 

  • Sweitzer RA (1996) Predation or starvation: consequences of foraging decisions by porcupines (Erethizon dorsatum). J Mammal 77:1068–1077

    Article  Google Scholar 

  • Telfer ES, Kelsall JP (1984) Adaptation of some large North American mammals for survival in snow. Ecology 65:1828–1834

    Article  Google Scholar 

  • Thibault I, Ouellet JP (2005) Hunting behaviour of eastern coyotes in relation to vegetation cover, snow conditions, and hare distribution. Ecoscience 12:466–475

    Article  Google Scholar 

  • Tsiropoula G (2003) Signatures of solar activity variability in meteorological parameters. J Atmos Sol Terr Phys 65:469–482

    Article  Google Scholar 

  • Wilmers CC, Getz WM (2005) Gray wolves as climate change buffers in Yellowstone. Plos Biol 3:0571–0576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the many field assistants and graduate students who participated in porcupine captures and observations. We thank the personnel from Parc National du Bic for their support during the project. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada, the Fonds Québécois de la Recherche sur la Nature et les Technologies, the Canada Research Chairs Program, the Canada Foundation for Innovation, and the Marie-Louise Furnestin grant from Association Française des Femmes Diplômées des Universités. We also thank Anne Loison for statistical advice, and Gilles Gauthier and two anonymous reviewers for very useful comments on earlier versions of this work. Capture and handling techniques were approved by the McGill Animal Care Committee (2000–2001), the Comité de protection des animaux de l’Université du Québec à Rimouski (2002–2005), and the Société de la Faune et des Parcs, Gouvernement du Québec (2000–2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Berteaux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material S1–S6 (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabille, G., Descamps, S. & Berteaux, D. Predation as a probable mechanism relating winter weather to population dynamics in a North American porcupine population. Popul Ecol 52, 537–546 (2010). https://doi.org/10.1007/s10144-010-0198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-010-0198-5

Keywords

Navigation