Skip to main content
Log in

Estimation of survival rate and extinction probability for stage-structured populations with overlapping life stages

  • Original Article
  • Published:
Population Ecology

Abstract

The development of methods providing reliable estimates of demographic parameters (e.g., survival rates, fecundity) for wild populations is essential to better understand the ecology and conservation requirements of individual species. A number of methods exist for estimating the demographics of stage-structured populations, but inherent mathematical complexity often limits their uptake by conservation practitioners. Estimating survival rates for pond-breeding amphibians is further complicated by their complex migratory and reproductive behaviours, often resulting in nonobservable states and successive cohorts of eggs and tadpoles. Here we used comprehensive data on 11 distinct breeding toad populations (Bufo calamita) to clarify and assess the suitability of a relatively simple method [the Kiritani–Nakasuji–Manly (KNM) method] to estimate the survival rates of stage-structured populations with overlapping life stages. The study shows that the KNM method is robust and provides realistic estimates of amphibian egg and larval survival rates for species in which breeding can occur as a single pulse or over a period of several weeks. The study also provides estimates of fecundity for seven distinct toad populations and indicates that it is essential to use reliable estimates of fecundity to limit the risk of under- or overestimating the survival rates when using the KNM method. Survival and fecundity rates for B. calamita populations were then used to define population matrices and make a limited exploration of their growth and viability. The findings of the study recently led to the implementation of practical conservation measures at the sites where populations were most vulnerable to extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi I (2002) Evaluation of generational percent parasitism on Lyonetia clerkella (Lepidoptera: Lyonetiidae) larvae in peach orchards under different management intensity. Appl Entomol Zool 37:347–355

    Article  Google Scholar 

  • Aksnes DL, Miller CB, Ohman MD, Wood SN (1997) Estimation techniques used in studies of copepod population dynamics—a review of underlying assumptions. Sarsia 82:279–296

    Google Scholar 

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Alvarez D, Nicieza AG (2002) Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct Ecol 16:640–648

    Article  Google Scholar 

  • Andow DA (1990) Population dynamics of an insect herbivore in simple and diverse habitats. Ecology 71:1006–1017

    Article  Google Scholar 

  • Aubry AE (2009) Population dynamics of the natterjack toad (Bufo calamita) in a fragmented pond complex, South West Ireland. PhD thesis, University College Cork

  • Bailey LL, Kendall WL, Church DR, Wilbur HM (2004) Estimating survival and breeding probability for pond-breeding amphibians: a modified robust design. Ecology 85:2456–2466

    Article  Google Scholar 

  • Banks B, Beebee TJC (1986) A comparison of the fecundities of two species of toad (Bufo bufo and Bufo calamita) from different habitat types in Britain. J Zool 208:325–327

    Article  Google Scholar 

  • Banks B, Beebee TJC (1988) Reproductive success of natterjack toads Bufo calamita in two contrasting habitats. J Anim Ecol 57:475–492

    Article  Google Scholar 

  • Beebee TJC (1979) Review of scientific information pertaining to the natterjack toad Bufo calamita throughout its geographical range. Biol Conserv 16:107–134

    Article  Google Scholar 

  • Beebee TJC, Buckley J (2001) Natterjack toad (Bufo calamita) site register for the UK 1970-199 inclusive. Unpublished report by University of Sussex and the Herpetological Conservation Trust, UK

  • Bellows TS, Birley MH (1981) Estimating developmental and mortality rates and stage recruitment from insect stage-frequency data. Res Popul Ecol 23:232–244

    Article  Google Scholar 

  • Berven KA (1988) Factors affecting variation in reproductive traits within a population of wood frogs (Rana sylvatica). Copeia 1988:605–615

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Chase JM (2003) Strong and weak trophic cascades along a productivity gradient. Oikos 101:187–195

    Article  Google Scholar 

  • Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423

    Article  Google Scholar 

  • Denton JS (1991) The terrestrial ecology of the natterjack, Bufo calamita (Laurenti) and the common toad Bufo bufo (Linnaeus). PhD thesis, University of Sussex

  • Denton JS, Beebee TJC (1997) Effects of predator interactions, prey palatability and habitat structure on survival of natterjack toad Bufo calamita larvae in replicated semi-natural ponds. Ecography 20:166–174

    Article  Google Scholar 

  • Denton JS, Hitchings SP, Beebee TJC, Gent A (1997) A recovery program for the natterjack toad (Bufo calamita) in Britain. Conserv Biol 11:1329–1338

    Article  Google Scholar 

  • Doak D, Kareiva P, Kleptetka B (1994) Modeling population viability for the desert tortoise in the Western Mojave desert. Ecol Appl 4:446–460

    Article  Google Scholar 

  • Drechsler M, Frank K, Hanski I, O’Hara RB, Wissel C (2003) Ranking metapopulation extinction risk: from patterns in data to conservation management decisions. Ecol Appl 13:990–998

    Article  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Elmberg J (1991) Ovarian cyclicity and fecundity in boreal common frogs Rana temporaria L. along a climatic gradient. Funct Ecol 5:340–350

    Article  Google Scholar 

  • Fujiwara M, Caswell H (2002) Estimating population projection matrices from multi-stage mark-recapture data. Ecology 83:3257–3265

    Google Scholar 

  • Griffiths RA, Williams C (2000) Modelling population dynamics of great crested newts (Triturus cristatus): a population viability analysis. Herpetol J 10:157–163

    Google Scholar 

  • Gross K, Ives AR, Nordheim EV (2005) Estimating fluctuating vital rates from time-series data: a case study of aphid biocontrol. Ecology 86:740–752

    Article  Google Scholar 

  • Halley JM, Oldham RS, Arntzen JW (1996) Predicting the persistence of amphibian populations with the help of a spatial model. J Appl Ecol 33:455–470

    Article  Google Scholar 

  • Horvitz CC, Schemske DW (1995) Spatiotemporal variation in demographic transitions of a tropical understory herb—projection matrix analysis. Ecol Monogr 65:155–192

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  CAS  PubMed  Google Scholar 

  • Kadel K (1975) Freilandstudien zur Uberlebensrate von Kreuzkrotenlarven (Bufo calamita LAUR.). Rev Suisse Zool 82:237–244 (in German with English abstract)

    Google Scholar 

  • Kiritani K, Nakasuji F (1967) Estimation of the stage-specific survival rate in the insect population with overlapping stages. Res Popul Ecol 9:143–152

    Article  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Lardner B, Loman J (2003) Growth or reproduction? Resource allocation by female frogs Rana temporaria. Oecologia 137:541–546. doi:10.1007/s00442-003-1390-5

    Article  PubMed  Google Scholar 

  • Manly BFJ (1976) Extensions to Kiritani and Nakasuji’s method for analysing insect stage-frequency data. Res Popul Ecol 17:191–199

    Article  Google Scholar 

  • Manly BFJ (1989) A review of methods for the analysis of stage-frequency data. In: McDonald LL, Manly BFJ, Lockwood JA, Logan JA (eds) Estimation and analysis of insect populations. Springer, New York, pp 3–69

    Google Scholar 

  • Manly BFJ (1990) Stage-structured populations: sampling, analysis and simulation. Chapman and Hall, London

    Google Scholar 

  • Manly BFJ (1997) A method for the estimation of parameters for natural stage-structured populations. Res Popul Ecol 39:101–111

    Article  Google Scholar 

  • Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Google Scholar 

  • May S, Beebee TJC (2010) Recent introduction or ancient ancestry? Use of genetic evidence to investigate the origins of range edge populations in natterjack toads (Bufo calamita). Conserv Genet 11:293–300. doi:10.1007/010592-009-9805-4

    Article  Google Scholar 

  • Nault A, Gagnon D (1993) Ramet demography of Allium tricoccum, a spring ephemeral, perennial forest herb. J Ecol 81:101–119

    Article  Google Scholar 

  • Nelson WA, McCauley E, Wimbert J (2004) Capturing dynamics with the correct rates: inverse problems using semiparametric approaches. Ecology 85:889–903

    Article  Google Scholar 

  • Pechmann JHK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW (1991) Declining amphibian populations—the problem of separating human impacts from natural fluctuations. Science 253:892–895

    Article  CAS  PubMed  Google Scholar 

  • Petranka JW, Harp EM, Holbrook CT, Hamel JA (2007) Long-term persistence of amphibian populations in a restored wetland complex. Biol Conserv 138:371–380. doi:10.1016/j.biocon.2007.05.002

    Article  Google Scholar 

  • Saether BE, Lillegard M, Grotan V, Filli F, Engen S (2007) Predicting fluctuations of reintroduced ibex populations: the importance of density dependence, environmental stochasticity and uncertain population estimates. J Anim Ecol 76:326–336. doi:10.1111/j.1365-2656.2006.01197.x

    Article  PubMed  Google Scholar 

  • Sandercock BK, Beissinger SR (2002) Estimating rates of population change for a neotropical parrot with ratio, mark-recapture and matrix methods. J Appl Stat 29:589–607

    Article  Google Scholar 

  • Semlitsch RD (1985) Reproductive strategy of a facultatively pedomorphic salamander Ambystoma talpoideum. Oecologia 65:305–313

    Article  Google Scholar 

  • Semlitsch RD (2000) Principles for management of aquatic-breeding amphibians. J Wildl Manag 64:615–631

    Article  Google Scholar 

  • Semlitsch RD (2002) Critical elements for biologically based recovery plans of aquatic-breeding amphibians. Conserv Biol 16:619–629

    Article  Google Scholar 

  • Semlitsch RD, Scott DE, Pechmann JHK, Gibbons JW (1996) Structure and dynamics of an amphibian community: evidence from a 16-year study of a natural pond. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic Press, San Diego, pp 217–248

    Chapter  Google Scholar 

  • Shaw W (2006) Conservation of natterjack toad (Bufo calamita) breeding habitats in County Kerry, Ireland. The Herpetological Conservation Trust, UK, and the Environmental Research Institute, Ireland

  • Sinsch U (1992a) Structure and dynamic of a natterjack toad metapopulation (Bufo calamita). Oecologia 90:489–499

    Article  Google Scholar 

  • Sinsch U (1992b) Sex-biased site fidelity and orientation behavior in reproductive natterjack toads (Bufo calamita). Ethol Ecol Evol 4:15–32

    Google Scholar 

  • Sinsch U (1997) Effects of larval history and microtags on growth and survival of natterjack (Bufo calamita) metamorphs. Herpetol J 7:163–168

    Google Scholar 

  • Smith DC (1983) Factors controlling tadpole populations of the chorus frog (Pseudacris triseriata) on Isle Royale, Michigan. Ecology 64:501–510

    Article  Google Scholar 

  • Smith MA, Green DM (2006) Sex, isolation and fidelity: unbiased long-distance dispersal in a terrestrial amphibian. Ecography 29:649–658

    Article  Google Scholar 

  • Stephan T, Ulbrich K, Grosse WR, Meyer F (2001) Modelling the extinction risk of isolated populations of natterjack toad Bufo calamita. Web Ecol 2:47–56

    Google Scholar 

  • Stevens VM, Baguette M (2008) Importance of habitat quality and landscape connectivity for the persistence of endangered natterjack toads. Conserv Biol 22:1194–1204. doi:10.1111/j.1523-1739.2008.00990-x

    Article  PubMed  Google Scholar 

  • Stevens VM, Wesselingh RA, Baguette M (2003) Demographic processes in a small, isolated population of natterjack toads (Bufo calamita) in southern Belgium. Herpetol J 13:59–67

    Google Scholar 

  • Stevens VM, Leboulenge E, Wesselingh RA, Baguette M (2006) Quantifying functional connectivity: experimental assessment of boundary permeability for the natterjack toad (Bufo calamita). Oecologia 150:161–171. doi:10.1007/s00442-006-0500-6

    Article  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  CAS  PubMed  Google Scholar 

  • Tejedo M (1992a) Absence of the trade off between the size and number of offspring in the natterjack toad (Bufo calamita). Oecologia 90:294–296

    Google Scholar 

  • Tejedo M (1992b) Variation in viability during development and hatching success in embryos of the toad Bufo calamita. Herpetol J 2:142–144

    Google Scholar 

  • Tinker MT, Doak DF, Estes JA, Hatfield BB, Staedler MM, Bodkin JL (2006) Incorporating diverse data and realistic complexity into demographic estimation procedures for sea otters. Ecol Appl 16:2293–2312

    Article  PubMed  Google Scholar 

  • Tuljapurkar S, Horvitz CC (2006) From stage to age in variable environments: life expectancy and survivorship. Ecology 87:1497–1509

    Article  PubMed  Google Scholar 

  • Vonesh JR, De la Cruz O (2002) Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecologia 133:325–333. doi:10.1007/s00442-002-1039-9

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds—The Robert H. MacArthur Award Lecture—presented 31 July 1995 Snowbird, Utah. Ecology 78:2279–2302

    Google Scholar 

  • Wood SN (1994) Obtaining birth and mortality patterns from structured population trajectories. Ecol Monogr 64:23–44

    Article  CAS  PubMed  Google Scholar 

  • Wood SN, Nisbet RM (1991) Estimation of mortality rates in stage-structured populations. Springer, Berlin

    Google Scholar 

  • Wootton JT, Bell DA (1992) A metapopulation model of the peregrine falcon in California—viability and management strategies. Ecol Appl 2:307–321

    Article  Google Scholar 

  • Yamamura K (1998) A simple method to estimate insect mortality from field census data: a modification of the Kiritani-Nakasuji-Manly method. Res Popul Ecol 40:335–340

    Article  Google Scholar 

  • Yamamura K, Yano E (1999) Effects of plant density on the survival rate of cabbage pests. Res Popul Ecol 41:183–188

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Irish Research Council for Science, Engineering and Technology (Embark Initiative) and by the Irish National Parks and Wildlife Service (NPWS). Permission for working on B. calamita was provided by NPWS. We are very grateful to Anne Petron and Lucie Dubouchet for help in the field. We thank Ruth Ramsay and Richard Griffiths in particular for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Charles Emmerson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material ESM (S1) (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, A., Bécart, E., Davenport, J. et al. Estimation of survival rate and extinction probability for stage-structured populations with overlapping life stages. Popul Ecol 52, 437–450 (2010). https://doi.org/10.1007/s10144-010-0194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-010-0194-9

Keywords

Navigation