Skip to main content
Log in

Rapid adaptation: a new dimension for evolutionary perspectives in ecology

  • Special Feature: Review
  • Rapid Adaptation
  • Published:
Population Ecology

Abstract

Although the study of adaptation is central to biology, two types of adaptation are recognized in the biological field: physiological adaptation (accommodation or acclimation; an individual organism’s phenotype is adjusted to its environment) and evolutionary–biological adaptation (adaptation is shaped by natural selection acting on genetic variation). The history of the former concept dates to the late nineteenth and early twentieth centuries, and has more recently been systemized in the twenty-first century. Approaches to the understanding of phenotypic plasticity and learning behavior have only recently been developed, based on cellular–histological and behavioral–neurobiological techniques as well as traditional molecular biology. New developments of the former concepts in phenotypic plasticity are discussed in bacterial persistence, wing di-/polymorphism with transgenerational effects, polyphenism in social insects, and defense traits for predator avoidance, including molecular biology analyses. We also discuss new studies on the concept of genetic accommodation resulting in evolution of phenotypic plasticity through a transgenerational change in the reaction norm based on a threshold model. Learning behavior can also be understood as physiological phenotypic plasticity, associating with the brain–nervous system, and it drives the accelerated evolutionary change in behavioral response (the Baldwin effect) with memory stock. Furthermore, choice behaviors are widely seen in decision-making of animal foragers. Incorporating flexible phenotypic plasticity and learning behavior into modeling can drastically change dynamical behavior of the system. Unification of biological sciences will be facilitated and integrated, such as behavioral ecology and behavioral neurobiology in the area of learning, and evolutionary ecology and molecular developmental biology in the theme of phenotypic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249–252

    CAS  PubMed  Google Scholar 

  • Abrams PA (1999) The adaptive dynamics of consumer choice. Am Nat 153:83–97

    Google Scholar 

  • Abrams PA (2005) Adaptive dynamics’ vs. ‘adaptive dynamics. J Evol Biol 18:1162–1165

    CAS  PubMed  Google Scholar 

  • Abrams PA (2006) The effect of switching behavior on the evolutionary diversification of generalist consumers. Am Nat 168:645–659

    PubMed  Google Scholar 

  • Abrams PA (2007) Habitat choice in predator-prey systems: spatial instability due to interacting adaptive movement. Am Nat 169:581–594

    PubMed  Google Scholar 

  • Abrams PA (2010) Quantitative descriptions of resource choice in ecological models. Popul Ecol 52:47–58

    Google Scholar 

  • Abrams PA, Rowe L (1996) The effects of predation on the age and size of maturity of prey. Evolution 50:1052–1061

    Google Scholar 

  • Abrams PA, Matsuda H, Harada Y (1993) Evolutionarily unstable fitness maxima and stable fitness minima in the evolution of continuous traits. Evol Ecol 7:465–487

    Google Scholar 

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defenses in animals and plants. Nature 401:60–63

    CAS  Google Scholar 

  • Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323:627–630

    CAS  PubMed  Google Scholar 

  • Ayano S, Wakamoto Y, Yamashita S, Yasuda K (2006) Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system. Biochem Biophys Res Commun 350:678–684

    CAS  PubMed  Google Scholar 

  • Baetz K, Kaern M (2006) Predictable trends in protein noise. Nat Genet 38:610–611

    CAS  PubMed  Google Scholar 

  • Baldwin JM (1896) A new factor in evolution. Am Nat 30:441–451

    Google Scholar 

  • Baldwin JM (1902) Development and evolution. MacMillan, London

    Google Scholar 

  • Blake WJ, Karen M, Cantor CR, Collins JJ (2001) Noise in eukaryotic gene expression. Nature 422:633–637

    Google Scholar 

  • Bock WJ (1980) The definition and recognition of biological adaptation. Am Zool 20:217–227

    Google Scholar 

  • Braendle C, Caillaud MC, Stern DL (2005) Genetic mapping of aphicarus—a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity 94:435–442

    CAS  PubMed  Google Scholar 

  • Braendle C, Davis GK, Brisson JA, Stern DL (2006) Wing dimorphism in aphids. Heredity 97:192–199

    CAS  PubMed  Google Scholar 

  • Burger JMS, Kolss M, Pont J, Kawecki TJ (2008) Learning ability and longevity: a symmetrical evolutionary trade-off in Drosophila. Evolution 62:1294–1304

    PubMed  Google Scholar 

  • Carew TJ (2000) Behavioral neurobiology: the cellular organization of natural behavior. Sinauer, New York

    Google Scholar 

  • Colbourne JK, Singan VR, Gilbert DG (2005) wFleaBase: the Daphnia genome database. BMC Bioinformatics 6:45

    PubMed  Google Scholar 

  • Cornette R, Koshikawa S, Miura T (2008) Histology of the hormone-producing glands in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae): a focus on soldier differentiation. Insects Sociaux 55:407–416

    Google Scholar 

  • Crispo E (2007) The Baldwin effect and genetic assimilation: revisiting two mechanism of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–2479

    PubMed  Google Scholar 

  • Dixon AFG, Horth S, Kindlmann P (1993) Migration in insects—cost and strategies. J Anim Ecol 62:182–190

    Google Scholar 

  • Dodson SI (1972) Mortality in a population Daphnia rosea. Ecology 53:1011–1023

    Google Scholar 

  • Dodson SI (1984) Predation of Heterocope septentroionalis on 2 species of Daphnia morphological defenses and their cost. Ecology 65:1249–1257

    Google Scholar 

  • Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Trans R Soc Lond B 357:1539–1547

    Google Scholar 

  • Dukas R (2004) Causes and consequences of limited attention. Brain Behav Evol 63:197–210

    PubMed  Google Scholar 

  • Dukas R, Kamil AC (2001) Limited attention: the constraint underlying search image. Behav Ecol 12:192–199

    Google Scholar 

  • Eads BD, Andrews J, Colbourne JK (2008) Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity 100:184–190

    CAS  PubMed  Google Scholar 

  • Elango N, Hunt BG, Goodisman MAD, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci USA 106:11206–11211

    CAS  PubMed  Google Scholar 

  • Engel K, Tollrian R (2009) Inducible defenses as key adaptations for the successful invasion of Daphnia lumholtzi in North America? Proc R Soc Lond B 276:1865–1873

    Google Scholar 

  • Faure JC (1932) The phase of locusts in South Africa. Bull Entomol Res 23:293–405

    Google Scholar 

  • Fisher (1930) Genetical theory of natural selection. Dover, New York (reprinted in 1958)

  • Flatt T, Kawecki TJ (2007) Juvenile hormone as a regulator of the trade-off between reproduction and life span in Drosophila melanogaster. Evolution 61:1980–1991

    PubMed  Google Scholar 

  • Fraser D, Kaern M (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol Microbiol 71:1333–1340

    CAS  PubMed  Google Scholar 

  • Fujisaki K (1992) A male fitness advantage to wing reduction in the oriental chinch bug, Cavelerius saccharivorus Okajima (Hemiptera, Lygaediae). Res Popul Ecol 34:173–183

    Google Scholar 

  • Furusawa C, Kaneko K (2001) Theory of robustness of irreversible differentiation in a stem cell system: chaos hypothesis. J Theor Biol 209:395–416

    CAS  PubMed  Google Scholar 

  • Futuyma D (1986) Evolutionary biology, 2nd edn. Sinauer, New York

    Google Scholar 

  • Gerhart J, Kirshner MW (1997) Cells, embryos, and evolution: toward a cellular and development understanding of phenotypic variation and evolutionary adaptability. Blackwell, New York

    Google Scholar 

  • Goodwyn PP, Fujisaki K (2007) Sexual conflicts, loss of flight, and fitness gains in locomotion of polymorphic water striders. Entomol Exp Appl 124:249–259

    Google Scholar 

  • Grozinger CM, Fan Y, Hoover SER, Winston ML (2007) Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol Ecol 16:4837–4848

    CAS  PubMed  Google Scholar 

  • Hammill E, Rogers A, Beckerman AP (2008) Costs, benefits and the evolution of inducible defenses: a case study with Daphnia pulex. J Evol Biol 21:705–715

    CAS  PubMed  Google Scholar 

  • Harvell CD (1990) The ecology and evolution of inducible defenses. Q Rev Biol 65:323–340

    CAS  PubMed  Google Scholar 

  • Havel JE, Dodson SI (1984) Chaoborus predation on typical and spined morphs of Daphnia pulex: behavioral observations. Limnol Oceanogr 29:487–494

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Boston

    Google Scholar 

  • Imai M, Naraki Y, Tochinai S, Miura T (2009) Elaborate regulations of the predator-induced polyphenism in the water flea Daphnia pulex: kairomone-sensitive periods and life-history tradeoffs. J Exp Zool A 311:788–795

    Google Scholar 

  • Ishii Y, Shimada M (2010) The effect of learning and search image on prey-predator interactions. Popul Ecol 52:27–35

    Article  Google Scholar 

  • Ishikawa Y, Aonuma H, Miura T (2008) Soldier-specific modification of the mandibular motor neurons in termites. PLoS ONE 3:e2617

    PubMed  Google Scholar 

  • Iwanaga K, Tojo S (1986) Effects of juvenile-hormone and rearing density on wing dimorphism and oocyte development in the brown planthopper, Nilaparvata lugens. J Insect Physiol 32:585–590

    CAS  Google Scholar 

  • Iwanaga K, Tojo S, Nagata T (1985) Immigration of the brown planthopper, Nilaparvata lugens, exhibiting various response to density in relation to wing mophism. Entomol Exp Appl 38:101–108

    Google Scholar 

  • Iwanaga K, Nakasuji F, Tojo S (1987) Wing polyphenism in Japanese and foreign strains of the brown planthopper, Nilaparvata lugens. Entomol Exp Appl 43:3–10

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    CAS  PubMed  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trend Evol Ecol 19:309–314

    Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapus. Science 294:1030–1038

    CAS  PubMed  Google Scholar 

  • Kaneko K (2007) Evolution of robustness to noise and mutation in gene expression dynamics. PloS One 2(5):e434

    PubMed  Google Scholar 

  • Kawecki TJ (2010) Evolutionary ecology of learning: insights from fruit flies. Popul Ecol 52:15–25

    Google Scholar 

  • Kirshner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427

    Google Scholar 

  • Kirshner MW, Gerhart JC (2005) The plausibility of life: resolving Darwin’s dilemma. Yale University Press, New Haven

    Google Scholar 

  • Kishida O, Nishimura K (2006) Flexible architecture of inducible morphological plasticity. J Anim Ecol 75:705–712

    PubMed  Google Scholar 

  • Kishida O, Mizuta Y, Nishimura K (2006) Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians. Ecology 87:1599–1604

    PubMed  Google Scholar 

  • Kishida O, Trussell G, Nishimura K (2009) Top-down effects on antagonistic inducible defense and offense. Ecology 90:1217–1226

    PubMed  Google Scholar 

  • Kishida O, Trussell GC, Mougi A, Nishimura A (2010) Evolutionary ecology of inducible morphological plasticity in predator-prey interaction: toward the practical links with population ecology. Popul Ecol 52:37–46

    Google Scholar 

  • Kishimoto R (1956) Effect of crowding during the larval period on the determination of the wing-form of the adults plant-hopper. Nature 178:641–642

    Google Scholar 

  • Kishimoto R (1976) Synoptic weather condition including long-distance immigration of planthoppers, Sogatella furcifera Horvath and Nilaparvata lugens Stal. Ecol Entomol 1:95–109

    Google Scholar 

  • Koshikawa S, Cornette R, Hojo M, Maekawa K, Matsumoto T, Miura T (2005) Screening of genes expressed in developing mandibles during soldier differentiation in the termite Hodotermopsis sjostedti. FEBS Lett 579:1365–1370

    CAS  PubMed  Google Scholar 

  • Krebs JR, Davies NB (1978) Behavioural ecology: an evolutionary approach. Blackwell, London

    Google Scholar 

  • Krebs JR, Davies NB (1981) An introduction to behavioural ecology. Blackwell, London

    Google Scholar 

  • Kurata Y, Mori T, Kawachi H, Kishida O, Hiraka I, Uchida N, Nishimura K (2005) Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole using cDNA subtraction and microarray analysis. Zool Sci 22:1435

    Google Scholar 

  • Laforsch C, Tollrian R (2004) Embryological aspects of inducible morphological defenses in Daphnia. J Morphol 262:701–707

    PubMed  Google Scholar 

  • Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446

    PubMed  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Lurling M, Van Donk E (2000) Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88:111–118

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Raw, New York

    Google Scholar 

  • Maekawa K, Mizuno S, Koshikawa S, Miura T (2008) Compound eye development during caste differentiation of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Zool Sci 25:699–705

    PubMed  Google Scholar 

  • Maeno K, Tanaka S (2009) Artificial miniaturization causes eggs laid by crowd-reared (gregarious) desert locusts to produce green (solitarious) offspring in the desert locust, Schistocerca gregaria. J Insect Physiol 55:849–854

    CAS  PubMed  Google Scholar 

  • Maki N, Gestwicki JE, Lake EM, Kiessling LL, Adler J (2000) Motility and chemotaxis of filamentous cells of Escherichia coli. J Bacteriol 182:4337–4342

    CAS  PubMed  Google Scholar 

  • Mery F, Kawecki TJ (2003) A fitness cost of learning ability in Drosophila melanogaster. Proc R Soc Lond B 270:2465–2469

    Google Scholar 

  • Mery F, Kawecki TJ (2004a) An operating cost of learning in Drosophila melanogaster. Anim Behav 68:589–598

    Google Scholar 

  • Mery F, Kawecki TJ (2004b) The effect of learning on experimental evolution of resource preference in Drosophila melanogaster. Evolution 58:57–767

    Google Scholar 

  • Mery F, Kawecki TJ (2005) A cost of long-term memory in Drosophila. Science 308:1148

    CAS  PubMed  Google Scholar 

  • Miura T, Kamikouchi A, Sawata M, Takeuchi H, Natori S, Kubo T, Matsumoto T (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci USA 96:13784–13879

    Google Scholar 

  • Morgan CL (1896) On modification and variation. Science 4:733–740

    PubMed  CAS  Google Scholar 

  • Mori T, Hiraka I, Kurata Y, Kawachi H, Kishida O, Nishimura K (2005) Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem Biophys Res Commun 330:1138–1145

    CAS  PubMed  Google Scholar 

  • Morooka S, Tojo S (1992) Maintenance and selection of strains exhibiting specific wing forms and body color under high-density conditions in the brown planthopper, Nilaparvata lugens (Homoptera, Delphacidae). Appl Entomol Zool 27:445–454

    Google Scholar 

  • Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Google Scholar 

  • Oaten A, Murdoch WW (1975) Switching, functional response, and stability in predator-prey systems. Am Nat 109:299–318

    Google Scholar 

  • Paenke I, Sendhoff B, Kawecki TJ (2007) Influence of plasticity and learning on evolution under directional selection. Am Nat 170:E47–E58

    PubMed  Google Scholar 

  • Pianka ER (1978) Evolutionary ecology, 2nd edn. Harper and Row, New York

    Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B 270:1433–1440

    Google Scholar 

  • Raine NE (2009) Cognitive ecology: environmental dependence of the fitness costs of learning. Curr Biol 19:R486–R488

    CAS  PubMed  Google Scholar 

  • Ricklefs RE (1979) Ecology, 2nd edn. Chiron, London

    Google Scholar 

  • Robinson BW, Gukas R (1999) The influence of phenotypic modifications on evolution: the Baldwin effect and modern perspectives. Oikos 85:582–589

    Google Scholar 

  • Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270

    CAS  PubMed  Google Scholar 

  • Roff DA (1986) The genetic-basis of wing dimorphism in the sand cricket, Gryllus firmus, and its relevance to the evolution of wing dimorphisms in insects. Heredity 57:221–231

    Google Scholar 

  • Sarkar S (2004) From the Reaktionsnorm to the evolution of adaptive plasticity: a historical sketch, 1909–1999. In: DeWitt TD, Scheiner SM (eds) Phenotypic plasticity. Oxford University Press, Oxford, pp 10–30

    Google Scholar 

  • Schmalhausen II (1949) Factors of evolution: the theory of stabilization selection. University of Chicago Press, Chicago

    Google Scholar 

  • Shibao H, Lee J-M, Kutsukake M, Fukatsu F (2003) Aphid soldier differentiation: density acts on both embryos and newborn nymphs. Naturwissenschaften 90:501–504

    CAS  PubMed  Google Scholar 

  • Shibao H, Kutsukake M, Fukatsu F (2004a) Density triggers soldier production in a social aphid. Proc R Soc Lond B 271:S71–S74

    Google Scholar 

  • Shibao H, Kutsukake M, Fukatsu F (2004b) Contact with non-soldiers acts as a proximate cue of density-dependent soldier production in a social aphid. J Insect Physiol 50:143–147

    CAS  PubMed  Google Scholar 

  • Shibao H, Kutsukake M, Fukatsu F (2004c) Density-dependent induction and suppression of soldier differentiation in an aphid social system. J Insect Physiol 50:995–1000

    CAS  PubMed  Google Scholar 

  • Shibao H, Kutsukake M, Lee J-M, Fukatsu F (2004d) Analysis of age polyethism in a soldier-producing aphid, Tuberaphis styraci, on an artificial diet. In: Simon J-C, Dedryver CA, Rispe C, Hullé M (eds) Aphids in a new millennium. Proceedings of the XVI international symposium on aphids. INRA, Versailles, pp 73–77

  • Shibao H, Kutsukake M, Matsuyama S, Fukatsu T, Shimada M (2010) Mechanism regulating caste differentiation in an aphid social system. Commun Integr Biol 3:1–5

    PubMed  Google Scholar 

  • Sibly RM, Smith RH (1985) Behavioural ecology: ecological consequences of adaptive behaviour. Blackwell, London

    Google Scholar 

  • Simpson GG (1953) The Baldwin effect. Evolution 7:110–117

    Google Scholar 

  • Spalding D (1873) Instinct, with original observations on young animals. MacMillan’s Mag 27:282–293

    Google Scholar 

  • Suzuki Y, Nijhort HF (2006) Evolution of a polyphenism by genetic accommodation. Science 311:650–652

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nijhort HF (2008) Genetic basis of adaptive evolution of a polyphenism by genetic accommodation. J Evol Biol 21:57–66

    CAS  PubMed  Google Scholar 

  • Tanaka S, Maeno K (2006) Phase-related body-color polyophenism in the hatching, re-examination of the material and crowding effects. J Insect Physiol 52:1054–1061

    CAS  PubMed  Google Scholar 

  • Tanaka S, Maeno K (2008) Maternal effects on progeny body size and color in the desert locust, Schistocera gregaria: examination of a current view. J Insect Physiol 54:612–618

    CAS  PubMed  Google Scholar 

  • Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP (1999) Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci USA 96:7083–7087

    CAS  PubMed  Google Scholar 

  • Tebbich S, Taborsky M, Fessl B, Blomqvist D (2001) Do woodpecker finches acquire tool-use by social learning? Proc R Soc Lond B 268:2189–2193

    CAS  Google Scholar 

  • Tollrian R (1993) Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity—morphological effects of Chaoborus kairomone concentration and their quantification. J Plankt Res 15:1309–1318

    Google Scholar 

  • Tollrian R, Dodson SI (1999) Inducible defenses in cladoceran. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 177–202

    Google Scholar 

  • Uvarov B (1966) Grasshoppers and locusts, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Buskirk J, Relyea RA (1998) Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol J Linn Soc 65:301–328

    Google Scholar 

  • Van der Stap I, Vos M, Mooij WM (2008) Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593:103–110

    Google Scholar 

  • Vespäläinen K (1978) Wing dimorphism and diapause in Gerris: determination and adaptive significance. In: Dingle H (ed) Evolution of insects migration and diapause. Springer, Heidelberg, pp 218–253

    Google Scholar 

  • Via S, Lande R (1985) Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522

    Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    CAS  PubMed  Google Scholar 

  • Waddington CH (1961) Genetic assimilation. Adv Genet 10:257–290

    CAS  PubMed  Google Scholar 

  • Wakamoto Y, Yasuda K (2006a) Quantitative evaluation of cell-to-cell communication effects in cell group class using on-chip individual-cell-based cultivation system. Biochem Biophys Res Commun 350:678–684

    PubMed  Google Scholar 

  • Wakamoto Y, Yasuda K (2006b) Epigenetic inheritance of elongated phenotypes between generations revealed by individual-cell-based direct observation. Meas Sci Technol 17:3171–3177

    CAS  Google Scholar 

  • Wakamoto Y, Ramsden J, Yasuda K (2005) Single-cell growth and division dynamics showing epigenetic correlations. Analyst 130:311–317

    CAS  PubMed  Google Scholar 

  • Weinstock GM, Robinson GE, The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    CAS  Google Scholar 

  • Weisser WW, Braendle C, Minoretti N (1999) Predator-induced morphological shift in the pea aphid. Proc R Soc Lond B 266:1175–1181

    Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Ann Rev Ecol Syst 20:249–278

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • West-Eberhard ML (2005) Phenotypic accommodation: adaptive innovation due to developmental plasticity. J Exp Zool B Mol Dev Evol 304B:610–618

    Google Scholar 

  • Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, LeConte Y, Rodriguez-Zas S, Robinson GE (2006) Genomic dissection of behavioral maturation in the honey bee. Proc Natl Acad Sci USA 103:16068–16075

    CAS  PubMed  Google Scholar 

  • Wilson EO (1971) Insect societies. Belknap University Press, Boston

    Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Harvard/Belknap Press, Boston

    Google Scholar 

  • Wilson RS, Kraft PG, Van Damme R (2005) Predator-specific changes in the morphology and swimming performance of larval Rana lessonae. Funct Ecol 19:238–244

    Google Scholar 

  • Woltereck R (1909) Weitere experimenelle Untersuchungen über Artveranderung, speziell über des Wesen quantitativer Artunterschiede bei Daphniden. Ver Deutsche Zool Gesell 19:110–172 (in German)

    Google Scholar 

  • Yarali A, Ehser S, Hapil FZ, Huang J, Gerber B (2009) Odor intensity learning in fruit flies. Proc R Soc Lond B 276:3413–3420

    CAS  Google Scholar 

  • Zera AJ, Tiebel KC (1989) Differences in juvenile-hormone esterase-activity between presumptive macropterous and brachypterous Gryllus rubens—implications for the hormonal-control of wing polymorphism. J Insect Physiol 35:7–17

    CAS  Google Scholar 

  • Zera AJ, Zhao ZW (2006) Intermediary metabolism and life-history trade-offs: differential metabolism of amino acids underlies the dispersal-reproduction trade-off in a wing-polymorphic cricket. Am Nat 167:889–900

    Google Scholar 

  • Zera AJ, Sall J, Otto K (1999) Biochemical aspects of flight and flightlessness in Gryllus: flight fuels, enzyme activities and electrophoretic profiles of flight muscles from flight-capable and flightless morphs. J Insect Physiol 45:275–285

    CAS  PubMed  Google Scholar 

  • Zhao ZW, Zera AJ (2002) Differential lipid biosynthesis underlies a tradeoff between reproduction and flight capability in a wing-polymorphic cricket. Proc Natl Acad Sci USA 99:16829–16834

    CAS  PubMed  Google Scholar 

  • Zupanc GKH (2003) Behavioral neurobiology. Oxford University Press, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Chief-in-Editor, Dr. T. Saitoh of Hokkaido University, and the editorial office, Ms M. Tanigawa, for supporting this symposium in the present issue, especially our long review. Special thanks should be given to Dr. T. Miura of Hokkaido University and Dr. K. Fujisaki of Kyoto University for kindly advising on the many important publications that we should cite. This research was supported in part by the Ministry of Education, Science, Sports and Culture, Grant-in-Aids for Scientific Research (B) 20370008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Shimada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M., Ishii, Y. & Shibao, H. Rapid adaptation: a new dimension for evolutionary perspectives in ecology. Popul Ecol 52, 5–14 (2010). https://doi.org/10.1007/s10144-009-0187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0187-8

Keywords

Navigation