Skip to main content
Log in

The influence of environmental variables on capybara (Hydrochoerus hydrochaeris: Rodentia, Hydrochoeridae) detectability in anthropogenic environments of southeastern Brazil

  • Original Article
  • Published:
Population Ecology

Abstract

Capybaras were monitored weekly from 1998 to 2006 by counting individuals in three anthropogenic environments (mixed agricultural fields, forest and open areas) of southeastern Brazil in order to examine the possible influence of environmental variables (temperature, humidity, wind speed, precipitation and global radiation) on the detectability of this species. There was consistent seasonality in the number of capybaras in the study area, with a specific seasonal pattern in each area. Log-linear models were fitted to the sample counts of adult capybaras separately for each sampled area, with an allowance for monthly effects, time trends and the effects of environmental variables. Log-linear models containing effects for the months of the year and a quartic time trend were highly significant. The effects of environmental variables on sample counts were different in each type of environment. As environmental variables affect capybara detectability, they should be considered in future species survey/monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alho CJR, Campos ZM, Gonçalves HC (1989) Ecology, social behavior and management of the capybara in the Pantanal of Brazil. In: Redford KH, Eisenberg JF (eds) Advances in neotropical mammalogy. Sandhill Crane, Gainesville, pp 163–194

  • Barreto GR, Herrera EA (1998) Foraging patterns of capybaras in a seasonally flooded savanna of Venezuela. J Trop Ecol 14:87–98

    Article  Google Scholar 

  • Bayliss P (1987) Survey methods and monitoring within crocodile management programmes. In: Webb GJW, Manolis SC, Whitehead PJ (eds) Wildlife management: crocodiles and alligators. Surrey Beatty and Sons, Chipping Norton, pp 157–175

  • Begon M, Mortimer M (1996) Population ecology. A unified study of animals and plants, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Bilenca DN, Kravetz FO (1999) Seasonal changes in microhabitat use and niche overlap between Akodon azarae and Calomys laucha (Rodentia, Muridae) in agroecosystems of Central Argentina. Stud Neotrop Fauna Environ 34(3):129–136. doi:10.1076/snfe.34.3.129.8913

    Article  Google Scholar 

  • Bispo P, Oliveira L, Crisci-Bispo V, Sousa K (2004) Environmental factors influencing distribution and abundance of Trichopteran larvae in central Brazilian mountain streams. Stud Neotrop Fauna Environ 39(3):233–237. doi:10.1080/01650520412331271710

    Google Scholar 

  • Caughley G (1977) Analysis of vertebrate populations. Wiley, Chichester

    Google Scholar 

  • Caughley G, Sinclair ARE (1994) Wildlife ecology and management. Blackwell Science, Boston

    Google Scholar 

  • Cordero GA, Ojasti J (1981) Comparison of capybara populations of open and forested habitats. J Wildl Manage 45:267–271

    Article  Google Scholar 

  • Ferraz KMPMB, Lechevalier MA, Couto HTZ, Verdade LM (2003) Damage caused by capybara on a corn field. Sci Agr 60:191–194. doi:10.1590/S0103-90162003000100029

    Google Scholar 

  • Ferraz KMPMB, Ferraz SFB, Moreira JR, Couto HTZ, Verdade LM (2007) Capybara (Hydrochoerus hydrochaeris) distribution in agroecosystems: a cross-scale habitat analysis. J Biogeogr 34:223–230. doi:10.1111/j.1365-2699.2006.01568.x

    Article  Google Scholar 

  • Ferraz KMPMB, Peterson AT, Scachetti-Pereira R, Vettorazzi CA, Verdade LM (2009) Distribution of capybaras in an agroecosystem, Southeastern Brazil, based on ecological niche modeling. J Mammal 90(1):189–194. doi:10.1644/07-MAMM-A-338.1

    Article  Google Scholar 

  • Field SA, Tyre AJ, Thorn KH, O’Connor PJ, Possingham HP (2005) Improving the efficiency of wildlife monitoring by estimating detectability: a case study of foxes (Vulpes vulpes) on the Eyre Peninsula, South Australia. Wildl Res 32(3):253–258. doi:10.1111/j.0006-341X.2000.01030.x

    Article  Google Scholar 

  • Gibbs JP (2000) Monitoring populations. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology. Controversies and consequences. Columbia University Press, New York, pp 213–252

    Google Scholar 

  • Gimona A, Brewer J (2006) Local environments effects and spatial effects in macroecological studies using mapped abundance classes: the case of the rook Corvus frugilegus in Scotland. J Anim Ecol 75:1140–1146. doi:10.1111/j.1365-2656.2006.01134.x

    Article  CAS  PubMed  Google Scholar 

  • González-Jiménez E (1978) Digestive physiology and feeding of capybara (Hydrochaeris hydrochaeris). In: Recheigl M (ed) Handbook series in nutrition and food. CRC Press, Cleveland, Sect 9, pp 163–177

  • Herrera EA (1986) The behavioural ecology of capybara, Hydrochoerus hydrochaeris (Ph.D. dissertation). University of Oxford, Oxford

  • Herrera EA, Macdonald DW (1987) Group stability and the structure of a capybara population. Symp Zool Soc London 5:115–130

    Google Scholar 

  • Herrera EA, Macdonald DW (1989) Resource utilization and territoriality group-living capybaras (Hydrochoerus hydrochaeris). J Anim Ecol 58:667–679

    Article  Google Scholar 

  • Jorgenson JP (1986) Notes on the ecology and behavior of capybaras in northeastern Colombia. Vida Silv Neotrop 1:31–40

    Google Scholar 

  • Karanth KU, Nichols JD, Seidensticker J, Dinerstein E, Smith JLD, Mcdougal C, Johnsingh AJT, Chundawat RS, Thapar V (2003) Science deficiency in conservation practice: the monitoring of tiger populations in India. Anim Conserv 6:141–146. doi:10.1017/S1367943003003184

    Article  Google Scholar 

  • Krebs JR, Davies NB (1993) An introduction to behavioural ecology, 3rd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Labruna MB, Kerber CE, Ferreira F, Faccini JLH, De Waal DT, Cennari SM (2001) Risk factors to infections and their occurrence on horses in the state of Sao Paulo, Brazil. Vet Paras 97:1–14. doi:10.1016/S0304-4017(01)00387-9

    Article  CAS  Google Scholar 

  • Lancia RA, Nichols JD, Pollock KH (1996) Estimating the number of animals in wildlife populations. In: Bookhout TA (ed) Research and management techniques for wildlife and habitats, 5th edn. The Wildlife Society, Bethesda, pp 215–253

    Google Scholar 

  • Macdonald D (1981) Dwindling resources and the social behaviour of Capybaras (Hydrochoerus hydrochaeris) (Mammalia). J Zool Lond 191:371–391

    Google Scholar 

  • McNab BK (2001) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, Ithaca

    Google Scholar 

  • Mönkkönen M, Aspi J (1998) Sampling error in measuring temporal density variability in animal populations and communities. Ann Zool Fenn 35:47–57

    Google Scholar 

  • Mourão GM, Campos ZM (1995) Survey of broad-snouted caiman Caiman latirostris, marsh deer Blastocerus dichotomus and capybara Hydrochaeris hydrochaeris in the area to be inundated by Porto Primavera dam, Brazil. Biol Conserv 73:27–31. doi:10.1016/0006-3207(95)90055-1

    Article  Google Scholar 

  • Nevoux M, Weimerskirch H, Barbraud C (2007) Environmental variation and experience-related differences in the demography of long-lived black-browed albatros. J Anim Ecol 76:159–167. doi:10.1111/j.1365-2656.2006.01191.x

    Article  PubMed  Google Scholar 

  • Ojasti J (1973) Estudio biologico del chigüire o capibara. FONAIAP, Caracas

    Google Scholar 

  • Pinto GRM, Ferraz KMPMB, Couto HTZ, Verdade LM (2006) Detectability of capybaras in forested habitats. Biot Neotr 6. http://www.biotaneotropica.org.br/v6n1/pt/abstract?article+bn01906012006. doi:10.1590/S1676-06032006000100008 (in Spanish)

  • Pollock KH, Nichols JD, Simons TR, Farnsworth GL, Bailey LL, Sauer JR (2002) Large scale monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119. doi:10.1002/env.514

    Article  Google Scholar 

  • Quintana RD, Rabinovich JE (1993) Assessment of capybara (Hydrochoerus hydrochaeris) populations in the wetlands of Corrientes, Argentina. Wetl Ecol Manage 2(4):223–230

    Article  Google Scholar 

  • Rodrigues RR (1999) A vegetação de Piracicaba e municípios do entorno (Circular Técnica do IPEF 189). IPEF, Piracicaba (in Portuguese)

  • Schaller GB (1983) Mammals and their biomass on a Brazilian ranch. Arq Zool 31:1–36

    Google Scholar 

  • Schaller GB, Crawshaw PG Jr (1981) Social organization in a capybara population. Säuget Mitt 29:3–16

    Google Scholar 

  • Setzer J (1946) Contribuição para o estudo do clima do Estado de São Paulo. Separata atualizada do Boletim do Departamento de Estradas de Rodagem, vol IX a XI de outubro de 1943 a outubro de 1945. Escolas Profissionais Salesianas, São Paulo (in Portuguese)

    Google Scholar 

  • Sinclair ARE, Fryxell JM, Caughley G (2006) Wildlife ecology, conservation and management, 2nd edn. Blackwell, Malden

    Google Scholar 

  • Sutherland WJ (2006) Ecological census techniques, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Thompson WL, White GC, Gowan C (1998) Monitoring vertebrate populations. Academic, San Diego

  • Tomas WM, Salis SM, Silva MP, Mourão GM (2001) Marsh Deer (Blastocerus dichotomus) distribution as a function of floods in the Pantanal Wetland, Brazil. Stud Neotrop Fauna Environ 36(1):9–13. doi:10.1076/snfe.36.1.9.8877

    Article  Google Scholar 

  • Verdade LM, Ferraz KMPMB (2006) Capybaras (Hydrochoerus hydrochaeris) in an anthropogenic habitat in Southeastern Brazil. Braz J Biol 66:371–378. doi:10.1590/S1519-69842006000200019

    Article  CAS  PubMed  Google Scholar 

  • VSN International Ltd (2009) GenStat Version 11.1. http://www.vsni.co.uk

  • Wayne AF, Cowling A, Rooney JF, Ward CG, Wheeler IB, Lindenmayer DB, Donnelly CF (2005) Factors affecting the detection of possums by spotlighting in Western Australia. Wildl Res 32(8):689–700. doi:10.1071/WR04089

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis of management of animal populations. Academic, San Diego

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16(8):446–453. doi:10.1016/S0169-5347(01)02205-4

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Procs Nos. 00/00180-9, 00/00602-0, and 00/00582-0). We thank Prof. Marcos Folegatti and the Prefeitura do Campus “Luiz de Queiroz”/USP for his enthusiastic support to our studies on capybara biology. We also thank the following students who participated in the field work: Allan Veltrone, Ana Paula A. Santos, Cristiane G. Caldana, Felipe Spina, Gabriel Brejão, Gustavo R. M. Pinto, Henrique O. Sawakuchi, José Wagner Ribeiro Jr., Paula Caroline Lopes, Roberto M. F. Santos-Filho and Társis R. O. Piffer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Maria Paschoaletto Micchi de Barros Ferraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz, K.M.P.M.d.B., Manly, B. & Verdade, L.M. The influence of environmental variables on capybara (Hydrochoerus hydrochaeris: Rodentia, Hydrochoeridae) detectability in anthropogenic environments of southeastern Brazil. Popul Ecol 52, 263–270 (2010). https://doi.org/10.1007/s10144-009-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0181-1

Keywords

Navigation