Population Ecology

, Volume 51, Issue 3, pp 373–384 | Cite as

The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

  • Patrick C. TobinEmail author
  • Christelle Robinet
  • Derek M. Johnson
  • Stefanie L. Whitmire
  • Ottar N. Bjørnstad
  • Andrew M. Liebhold
Special Feature: Review Allee Effects: Mating and Invasion


Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.


Biological invasions Establishment Invasion dynamics Nonindigenous species Spread 



We thank Laura Blackburn for assistance in manuscript preparation, and Caz Taylor and Takehiko Yamanaka for their helpful comments. We also acknowledge funding from the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service Grants to O.N.B, A.M.L., and P.C.T. (2006), and D.M.J. (2006); EU Projects ALARM GOCE-CT-2003-506675 (FP6 Integrated Project, Assessing large-scale environmental risks with tested methods) and PRATIQUE KBBE-2007-212459 (FP7 Enhancements of Pest Risk Analysis Techniques) to C.R.; and a US Forest Service Research Joint Adventure Agreement to S.L.W. (2005).


  1. Allee WC (1932) Animal aggregations: a study in general sociology. University of Chicago Press, ChicagoGoogle Scholar
  2. Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landscape Ecol 4:177–188. doi: 10.1007/BF00132860 CrossRefGoogle Scholar
  3. Barbosa P, Greenblatt J (1979) Suitability, digestibility and assimilation of various host plants of the gypsy moth, Lymantria dispar L. Oecologia 43:111–119. doi: 10.1007/BF00346676 CrossRefGoogle Scholar
  4. Barbosa P, Gross P, Provan GJ, Stermitz FR (1990) Allelochemicals in foliage of unfavored tree hosts of the gypsy moth, Lymantria dispar L. J Chem Ecol 16:1731–1738. doi: 10.1007/BF01014104 CrossRefGoogle Scholar
  5. Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends Ecol Evol 22:185–191. doi: 10.1016/j.tree.2006.12.002 PubMedCrossRefGoogle Scholar
  6. Beroza M, Knipling EF (1972) Gypsy moth control with the sex attractant pheromone. Science 177:19–27. doi: 10.1126/science.177.4043.19 PubMedCrossRefGoogle Scholar
  7. Bess HA, Spurr SH, Littlefield EW (1947) Forest site conditions and the gypsy moth. Harv For Bull 22Google Scholar
  8. Bierl BA, Beroza M, Collier CW (1970) Potent sex attractant of the gypsy moth: its isolation, identification and synthesis. Science 170:87–89. doi: 10.1126/science.170.3953.87 PubMedCrossRefGoogle Scholar
  9. Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J Res 36:289–298. doi: 10.1139/x05-250 CrossRefGoogle Scholar
  10. Burgess AF (1917) Suppression of the gipsy [sic] and brown-tail moths and its value to states not infested. Yearbook US Dept Agric for the Year 1916, Washington, DCGoogle Scholar
  11. Burgess AF (1930) The gipsy [sic] moth and the brown-tail moth. United States Department of Agriculture Farmers’ Bulletin 1623Google Scholar
  12. Burgess AF, Crossman SS (1929) Imported insect enemies of the gipsy [sic] moth and the brown-tail moth. US Dept Agric Tech Bull 86, Washington, DCGoogle Scholar
  13. Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164:25–37. doi: 10.1086/421443 PubMedCrossRefGoogle Scholar
  14. Campbell RW (1967) The analysis of numerical change in gypsy moth populations. For Sci Monogr 15:1–33Google Scholar
  15. Campbell RW, Sloan RJ (1977) Forest stand responses to defoliation by the gypsy moth. For Sci Monogr 19:1–34Google Scholar
  16. Campbell RW, Sloan RJ, Biazak CE (1977) Sources of mortality among late instar gypsy moth (Lepidoptera : Lymantriidae) larvae in sparse populations. Environ Entomol 6:865–871Google Scholar
  17. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405–410. doi: 10.1016/S0169-5347(99)01683-3 PubMedCrossRefGoogle Scholar
  18. Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  19. Dahlsten DL, Garcia R, Lorraine H (1989) Eradication as a pest management tool: concepts and contexts. In: Dahlsten DL, Garcia R (eds) Eradication of exotic pests. Yale University Press, New Haven, pp 3–15Google Scholar
  20. Dennis B (1989) Allee effects: population growth, critical density, and the chance of extinction. Nat Resour Model 3:481–538Google Scholar
  21. Doane CC, McManus ME (1981) The gypsy moth: Research toward integrated pest management. US Dept Agric For Serv Gen Tech Bull 1584Google Scholar
  22. Dreistadt SH (1983) An assessment of gypsy moth eradication attempts in Michigan (Lepidoptera: Lymantriidae). Great Lk Entomol 16:143–148Google Scholar
  23. Dwyer G, Dushoff J, Yee SH (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430:341–345. doi: 10.1038/nature02569 PubMedCrossRefGoogle Scholar
  24. Eisner T, Johnessee JS, Carrel J, Hendry LB, Meinwald J (1974) Defensive use by an insect of a plant resin. Science 184:996–999. doi: 10.1126/science.184.4140.996 PubMedCrossRefGoogle Scholar
  25. Elkinton JS, Cardé RT (1988) Effects of intertrap distance and wind direction on the interaction of gypsy moth (Lepidoptera: Lymantriidae) pheromone-baited traps. Environ Entomol 17:764–769Google Scholar
  26. Elkinton JS, Liebhold AM (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596Google Scholar
  27. Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard A, Liebhold AM, Smith HR (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342. doi: 10.2307/2265735 CrossRefGoogle Scholar
  28. Elkinton JS, Liebhold AM, Muzika RM (2004) Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul Ecol 46:171–178. doi: 10.1007/s10144-004-0175-y CrossRefGoogle Scholar
  29. Forbush EH, Fernald CH (1896) The gypsy moth. Wright and Potter, Boston, MAGoogle Scholar
  30. Gansner DA, Herrick OW (1987) Estimating the benefits of gypsy moth control on timberland. US Dept Agric For Serv Res Note NE-337Google Scholar
  31. Gansner DA, Herrick OW, White WB (1978) Economic analysis of the gypsy moth problem in the Northeast. IV. Forest stand hazard ratings for gypsy moth. US Dept Agric For Serv Res Paper NE-410Google Scholar
  32. Gascoigne JC, Lipcius RN (2004) Allee effects driven by predation. J Appl Ecol 41:801–810. doi: 10.1111/j.0021-8901.2004.00944.x CrossRefGoogle Scholar
  33. Gould JR, Elkinton JS, Wallner WE (1990) Density-dependent suppression of experimentally created gypsy moth, Lymantria dispar (Lepidoptera, Lymantriidae), populations by natural enemies. J Anim Ecol 59:213–233. doi: 10.2307/5169 CrossRefGoogle Scholar
  34. Gray RH, Lorimer CG, Tobin PC, Raffa KF (2008) Pre-outbreak dynamics of a recently established invasive herbivore: Roles of natural enemies and habitat structure in stage-specific performance of gypsy moth (Lepidoptera: Lymantriidae) populations in northeastern Wisconsin. Environ Entomol 37:1174–1184. doi: 10.1603/0046-225X(2008)37[1174:PDOARE]2.0.CO;2 CrossRefGoogle Scholar
  35. Gypsy Moth Digest (2008) USDA Forest Service, State and Private Forestry, Morgantown.
  36. Haack RA (2001) Intercepted scolytidae (Coleoptera) at US ports of entry: 1985–2000. Integr Pest Manage Rev 6:253–282. doi: 10.1023/A:1025715200538 CrossRefGoogle Scholar
  37. Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest Lepidoptera. Microbiol Mol Biol Rev 63:814–835PubMedGoogle Scholar
  38. Hajek AE, Humber RA, Elkinton JS (1995) The mysterious origin of Entomophaga maimaiga in North America. Am Entomol 41:31–42Google Scholar
  39. Harrison RG, Wintermeyer SF, Odell TM (1983) Patterns of genetic variation within and among gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), populations. Ann Entomol Soc Am 76:652–656Google Scholar
  40. Hastings FL, Hain FP, Odell TM (2002a) A survey of parasitoids and other organisms affecting gypsy moth (Lepidoptera: Lymantria dispar L.) along the leading edge of its southward movement. J Entomol Sci 37:207–209Google Scholar
  41. Hastings FL, Hain FP, Smith HR, Cook SP, Monahan JF (2002b) Predation of gypsy moth (Lepidoptera: Lymantriidae) pupae in three ecosystems along the southern edge of infestation. Environ Entomol 31:668–675CrossRefGoogle Scholar
  42. Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, LondonGoogle Scholar
  43. Herrick OW (1981) Forest pest management economics—application to the gypsy moth. For Sci 27:128–138Google Scholar
  44. Herrick OW, Gansner DA (1987) Mortality risks for forest trees threatened with gypsy moth infestation. US Dept Agric For Serv Res Note NE-338Google Scholar
  45. Hopper KR, Roush RT (1993) Mate finding, dispersal, number released, and the success of biological control introductions. Ecol Entomol 18:321–331. doi: 10.1111/j.1365-2311.1993.tb01108.x CrossRefGoogle Scholar
  46. Howard LO, Fiske WF (1911) The importation into the United States of the parasites of the gipsy [sic] moth and the brown-tail moth. US Dept Agric Bur Entomol Bull 91Google Scholar
  47. Johnson DM, Liebhold AM, Tobin PC, Bjørnstad ON (2006) Allee effects and pulsed invasion by the gypsy moth. Nature 444:361–363. doi: 10.1038/nature05242 PubMedCrossRefGoogle Scholar
  48. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO (1998) Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–1026. doi: 10.1126/science.279.5353.1023 PubMedCrossRefGoogle Scholar
  49. Keena MA, Grinberg PS, Wallner WE (2007) Inheritance of female flight in Lymantria dispar (Lepidoptera: Lymantriidae). Environ Entomol 36:484–494. doi: 10.1603/0046-225X(2007)36[484:IOFFIL]2.0.CO;2 PubMedCrossRefGoogle Scholar
  50. Keitt TH, Lewis MA, Holt RD (2001) Allee effects, invasion pinning, and species borders. Am Nat 157:203–216. doi: 10.1086/318633 PubMedCrossRefGoogle Scholar
  51. Kinlan BP, Hastings A (2005) Rates of population spread and geographic expansion. What exotic species tell us. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions insights into ecology, evolution and biogeography. Sinauer and Associates, Sunderland, pp 381–419Google Scholar
  52. Kirkland AH (1906) First annual report of the superintendent for suppressing the gypsy and brown-tail moths. Commonwealth of Massachusetts, Public Document No. 73Google Scholar
  53. Koshio C (1996) Pre-ovipositional behavior of the female gypsy moth, Lymantria dispar L. (Lepidoptera, Lymantriidae). Appl Entomol Zool (Jpn) 31:1–10Google Scholar
  54. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042. doi: 10.2307/2265698 CrossRefGoogle Scholar
  55. Knipling EF (1966) Some basic principles of insect population suppression and management. Bull Entomol Soc Am 12:7–15Google Scholar
  56. Knipling EF (1979) The basic principles of insect population suppression and management. US Department of Agriculture, Washington, DCGoogle Scholar
  57. Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol (Kyoto) 40:259–269. doi: 10.1007/BF02763457 CrossRefGoogle Scholar
  58. Lechowicz MJ, Jobin L (1983) Estimating the susceptibility of tree species to attack by the gypsy moth, Lymantria dispar. Ecol Entomol 8:171–183. doi: 10.1111/j.1365-2311.1983.tb00496.x CrossRefGoogle Scholar
  59. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi: 10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  60. Leuschner WA, Young JA, Walden SA, Ravlin FW (1996) Potential benefits of slowing the gypsy moth’s spread. S J Appl For 20:65–73Google Scholar
  61. Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43:141–158. doi: 10.1006/tpbi.1993.1007 CrossRefGoogle Scholar
  62. Liebhold AM, Bascompte J (2003) The Allee effect, stochastic dynamics and the eradication of alien species. Ecol Lett 6:133–140. doi: 10.1046/j.1461-0248.2003.00405.x CrossRefGoogle Scholar
  63. Liebhold AM, Tobin PC (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253–262. doi: 10.1007/s10144-006-0014-4 CrossRefGoogle Scholar
  64. Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408. doi: 10.1146/annurev.ento.52.110405.091401 PubMedCrossRefGoogle Scholar
  65. Liebhold AM, Halverson JA, Elmes GA (1992) Gypsy moth invasion in North America: a quantitative analysis. J Biogeogr 19:513–520. doi: 10.2307/2845770 CrossRefGoogle Scholar
  66. Liebhold AM, Gottschalk KW, Muzika RM, Montgomery ME, Young R, O’Day K, Kelley B (1995a) Suitability of North American tree species to the gypsy moth: a summary of field and laboratory tests. US Dept Agric For Serv Gen Tech Rep NE-211Google Scholar
  67. Liebhold AM, Macdonald WL, Bergdahl D, Mastro VC (1995b) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci Monogr 30:1–49Google Scholar
  68. Liebhold AM, Mastro VC, Schaefer PW (1989) Learning from the legacy of Léopold Trouvelot. Bull Entomol Soc Am 35:20–22Google Scholar
  69. Liebhold AM, Raffa KF, Diss A (2005) Forest type affects predation on gypsy moth pupae in Wisconsin. Agric For Entomol 7:179–185. doi: 10.1111/j.1461-9555.2005.00256.x CrossRefGoogle Scholar
  70. Liebhold AM, Work TT, McCullough DG, Cavey JF (2006) Airline baggage as a pathway for alien insect species invading the United States. Am Entomol 53:48–54Google Scholar
  71. Liebhold AM, Turcáni M, Kamata N (2008) Inference of adult female dispersal from the distribution of gypsy moth egg masses in a Japanese city. Agric For Entomol 10:69–73Google Scholar
  72. Lockwood J, Hoopes M, Marchetti M (2007) Invasion ecology. Blackwell, MaldenGoogle Scholar
  73. Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518. doi: 10.1086/285812 CrossRefGoogle Scholar
  74. Mattson WJ, Vanhanen H, Veteli T, Sivonen S, Niemelä P (2007) Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biol Inv 9:957–974. doi: 10.1007/s10530-007-9096-y CrossRefGoogle Scholar
  75. McCay RE, White WB (1973) Economic analysis of the gypsy moth problem in the Northeast. I. Applied to commercial stands. US Dept Agric For Serv Res Paper NE-275Google Scholar
  76. McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D (2006) Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Inv 8:1464–1573. doi: 10.1007/s10530-005-1798-4 CrossRefGoogle Scholar
  77. Moeller GH, Marler RL, McCay RE, White WB (1977) Economic analysis of the gypsy moth problem in the Northeast. III. Impacts on homeowners and managers of recreation areas. US Dept Agric For Serv Res Paper NE-360Google Scholar
  78. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi: 10.1073/pnas.091093398 PubMedCrossRefGoogle Scholar
  79. Myers JH, Savoie A, Van Randen E (1998) Eradication and pest management. Annu Rev Entomol 43:471–491. doi: 10.1146/annurev.ento.43.1.471 PubMedCrossRefGoogle Scholar
  80. Niemelä P, Mattson WJ (1996) Invasion of North American forests by European Phytophagous insects. Bioscience 46:741–753. doi: 10.2307/1312850 CrossRefGoogle Scholar
  81. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Inv 1:3–19. doi: 10.1023/A:1010034312781 CrossRefGoogle Scholar
  82. Payne BR, White WB, McCay RE, McNichols RR (1973) Economic analysis of the gypsy moth problem in the Northeast. II. Applied to residential property. US Dept Agric For Serv Res Paper NE-285Google Scholar
  83. Perry CC (1955) Gypsy moth appraisal program and proposed plan to prevent spread of the moths. US Dept Agric Tech Bull 1124Google Scholar
  84. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol Econ 52:273–288. doi: 10.1016/j.ecolecon.2004.07.013 CrossRefGoogle Scholar
  85. Raffa KF, Berryman AA (1983) The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecol Monogr 53:27–49. doi: 10.2307/1942586 CrossRefGoogle Scholar
  86. Redman AM, Scriber JM (2000) Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia 125:218–228. doi: 10.1007/s004420000444 CrossRefGoogle Scholar
  87. Reineke A, Zebitz CPW (1998) Flight ability of gypsy moth females (Lymantria dispar L.) (Lep., Lymantriidae): a behavioural feature characterizing moths from Asia? J Appl Entomol 122:307–310CrossRefGoogle Scholar
  88. Riley CV, Vasey G (1870) Imported insects and native American insects. Am Entomol 2:110–112Google Scholar
  89. Robinet C, Liebhold AM, Gray D (2007) Variation in developmental time affects mating success and Allee effects. Oikos 116:1227–1237. doi: 10.1111/j.0030-1299.2007.15891.x CrossRefGoogle Scholar
  90. Robinet C, Lance DR, Thorpe KW, Onufrieva KS, Tobin PC, Liebhold AM (2008) Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. J Anim Ecol 77:966–973. doi: 10.1111/j.1365-2656.2008.01417.x PubMedCrossRefGoogle Scholar
  91. Rossiter MC, Schultz JC, Baldwin IT (1988) Relationships among defoliation, leaf phenolics, and gypsy moth performance. Ecology 69:267–277. doi: 10.2307/1943182 CrossRefGoogle Scholar
  92. Sharov AA, Liebhold AM (1998) Model of slowing the spread of the gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8:1170–1179. doi: 10.1890/1051-0761(1998)008[1170:MOSTSO]2.0.CO;2 CrossRefGoogle Scholar
  93. Sharov AA, Liebhold AM, Ravlin FW (1995) Prediction of Gypsy Moth (Lepidoptera: Lymantriidae) mating success from pheromone trap counts. Environ Entomol 24:1239–1244Google Scholar
  94. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218PubMedGoogle Scholar
  95. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, OxfordGoogle Scholar
  96. Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251. doi: 10.1086/285796 CrossRefGoogle Scholar
  97. South AB, Kenward RE (2001) Mate finding, dispersal distances and population growth in invading species: a spatially explicit model. Oikos 95:53–58. doi: 10.1034/j.1600-0706.2001.950106.x CrossRefGoogle Scholar
  98. Stephens PA, Sutherland WJ, Freckleton R (1999) What is the Allee effect? Oikos 87:185–190. doi: 10.2307/3547011 CrossRefGoogle Scholar
  99. Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895–908. doi: 10.1111/j.1461-0248.2005.00787.x CrossRefGoogle Scholar
  100. Tcheslavskaia K, Brewster CC, Sharov AA (2002) Mating success of gypsy moth (Lepidoptera: Lymantriidae) females in southern Wisconsin. Great Lakes Entomol 35:1–7Google Scholar
  101. Tcheslavskaia KS, Thorpe KW, Brewster CC, Sharov AA, Leonard DS, Reardon RC, Mastro VC, Sellers P, Roberts EA (2005) Optimization of pheromone dosage for gypsy moth mating disruption. Entomol Exp Appl 115:355–361. doi: 10.1111/j.1570-7458.2005.00266.x CrossRefGoogle Scholar
  102. Thorpe KW, Leonard DS, Mastro VC, McLane W, Reardon RC, Sellers P, Webb RE, Talley SE (2000) Effectiveness of gypsy moth mating disruption from aerial applications of plastic laminate flakes with and without a sticking agent. Agric For Entomol 2:225–231. doi: 10.1046/j.1461-9563.2000.00069.x CrossRefGoogle Scholar
  103. Thorpe K, Reardon R, Tcheslavskaia K, Leonard D, Mastro V (2006) A review of the use of mating disruption to manage gypsy moth, Lymantria dispar (L.). US Dept Agric For Health Tech Ent Team 2006-13Google Scholar
  104. Thurber DK, McClain WR, Whitmore RC (1994) Indirect effects of gypsy moth defoliation on nest predation. J Wildl Manage 58:493–500. doi: 10.2307/3809321 CrossRefGoogle Scholar
  105. Tobin PC, Blackburn LM (2007) Slow the Spread: a national program to manage the gypsy moth. US Dept Agric For Serv Gen Tech Rep NRS-6Google Scholar
  106. Tobin PC, Blackburn LM (2008) Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin. Environ Entomol 37:87–93. doi: 10.1603/0046-225X(2008)37[87:LDOTGM]2.0.CO;2 PubMedCrossRefGoogle Scholar
  107. Tobin PC, Liebhold AM, Roberts EA (2007a) Comparison of methods for estimating the spread of a non-indigenous species. J Biogeogr 34:305–312. doi: 10.1111/j.1365-2699.2006.01600.x CrossRefGoogle Scholar
  108. Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM (2007b) Invasion speed is affected by geographic variation in the strength of Allee effects. Ecol Lett 10:36–43. doi: 10.1111/j.1461-0248.2006.00991.x PubMedCrossRefGoogle Scholar
  109. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Scientist 84:468–478Google Scholar
  110. Werner SM, Raffa KF (2000) Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. For Ecol Manage 139:135–155CrossRefGoogle Scholar
  111. Whitmire SL, Tobin PC (2006) Persistence of invading gypsy moth colonies in the United States. Oecologia 147:230–237. doi: 10.1007/s00442-005-0271-5 PubMedCrossRefGoogle Scholar
  112. Work TT, McCullough DG, Cavey JF, Komsa R (2005) Arrival rate of nonindigenous insect species into the United States through foreign trade. Biol Inv 7:323–332. doi: 10.1007/s10530-004-1663-x CrossRefGoogle Scholar

Copyright information

© U.S. Government 2009

Authors and Affiliations

  • Patrick C. Tobin
    • 1
    Email author
  • Christelle Robinet
    • 2
  • Derek M. Johnson
    • 3
  • Stefanie L. Whitmire
    • 4
  • Ottar N. Bjørnstad
    • 5
  • Andrew M. Liebhold
    • 1
  1. 1.Forest Service, United States Department of AgricultureNorthern Research StationMorgantownUSA
  2. 2.INRAOrléansFrance
  3. 3.Department of BiologyUniversity of LouisianaLafayetteUSA
  4. 4.Department of Agronomy and SoilsUniversity of Puerto Rico, MayagüezMayagüezPuerto Rico
  5. 5.Departments of Entomology and BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations