Skip to main content
Log in

Does immune function influence population fluctuations and level of parasitism in the cyclic geometrid moth?

  • Original Article
  • Published:
Population Ecology

Abstract

Populations of the autumnal moth, Epirrita autumnata, exhibit cycles with high amplitudes in northernmost Europe, culminating in devastating outbreak densities at favourable sites. Parasitism by hymenopteran parasitoids has been hypothesised to operate with a delayed density dependence capable of producing the observed dynamics. It has also been hypothesised that insects in crowded conditions invest greatly in their immunity as a counter-measure to increased risk of parasitism and pathogen infections. Furthermore, inducible plant defences consequent to grazing by herbivorous insects may be linked to the performance of parasitoids and pathogens through increased immunocompetence of the herbivore feeding on the foliage, in which the defence induction has taken place. At ten sampling sites, we quantified larval abundance, outbreak status and percentage larval parasitism during an extended peak phase of a population cycle. These population level covariates, together with an individual pupal mass, were used to explain differences in the immune defence, measured as an encapsulation reaction to artificial antigen. We also conducted a field study for an investigation of the susceptibility of autumnal moth pupae to naturally occurring pupal parasitoids. We did not find obvious differences between the encapsulation rate of autumnal moths originating from the sites with different past and current larval densities and risks for parasitism. The best ranked statistical models included pupal mass and outbreak status as explanatory variables, although both showed only slight effects on the encapsulation rate. The host resistance test revealed positive relationships between the encapsulation rate, body size and percentage parasitism of the exposed pupae, indicating that pupal parasitoids chose, and/or survived better, in large host individuals irrespective of their encapsulation ability. Thus, our results do not provide support for the hypothesis that variation in the immune function drives or modulates population cycles of autumnal moths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity?. Anim Behav 68:1443–1449

    Article  Google Scholar 

  • Amaya KE, Asgari S, Jung R, Hongskula M, Beckage NE (2005) Parasitization of Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired host immune response. J Insect Physiol 51:505–512

    Article  PubMed  CAS  Google Scholar 

  • Barnes AI, Siva-Jothy MT (2000) Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc R Soc Lond B 267:177–182

    Article  CAS  Google Scholar 

  • Beckage NE (1998) Modulation of immune responses to parasitoids by polydnaviruses. Parasitology 116:S57–S64

    PubMed  Google Scholar 

  • Beckerman A, Benton TG, Ranta E, Kaitala V, Lundberg P (2002) Population dynamic consequences of delayed life-history effects. Trends Ecol Evol 17:263–269

    Article  Google Scholar 

  • Berryman AA (1996) What causes population cycles of forest Lepidoptera?. Trends Ecol Evol 11:28–32

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

  • Bylund H (1995) Long-term interactions between the autumnal moth and mountain birch: the roles of resources, competitors, natural enemies, and weather. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala

  • Cociancich S, Bulet P, Hetru C, Hoffmann JA (1994) The inducible antibacterial peptides of insects. Parasitol Today 10:132–139

    Article  PubMed  CAS  Google Scholar 

  • Cotter SC, Hails RS, Cory JS, Wilson K (2004a) Density-dependent prophylaxis and condition-dependent immune function in Lepidopteran larvae: a multivariate approach. J Anim Ecol 73:283–293

    Article  Google Scholar 

  • Cotter SC, Kruuk LEB, Wilson K (2004b) Costs of resistance: genetic correlations and potential trade-offs in an insect immune system. J Evol Biol 17:421–429

    Article  CAS  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  PubMed  CAS  Google Scholar 

  • Glatz RV, Asgari S, Schmidt O (2004) Evolution of polydnaviruses as insect immune suppressors. Trends Microbiol 12:545–554

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Goulson D, Cory JS (1995) Responses of Mamestra brassicae (Lepidoptera: Noctuidae) to crowding: interactions with disease resistance, colour phase and growth. Oecologia 104:416–423

    Article  Google Scholar 

  • Haukioja E (1990) Induction of defenses in trees. Annu Rev Entomol 36:25–42

    Article  Google Scholar 

  • Haukioja E (2005) Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios. Ann Zool Fenn 42:313–325

    Google Scholar 

  • Haukioja E, Neuvonen S (1985) The relationship between size and reproductive potential in male and female Epirrita autumnata (Lep., Geometridae). Ecol Entomol 10:267–270

    Google Scholar 

  • Haukioja E, Neuvonen S, Hanhimäki S, Niemelä P (1988) The autumnal moth in Fennoscandia. In: Berryman AA (eds) Dynamics of forest insect populations: patterns, causes, and implications. Plenum, London, pp 163–178

    Google Scholar 

  • Hochberg ME (1991) Viruses as costs to gregarious feeding-behavior in the Lepidoptera. Oikos 61:291–296

    Article  Google Scholar 

  • Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA, Reichhart JM, Hetru C (1996) Innate immunity in higher insects. Curr Opin Immunol 8:8–13

    Article  PubMed  CAS  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Kaitaniemi P, Ruohomäki K, Tammaru T, Haukioja E (1999) Induced resistance of host tree foliage during and after a natural insect outbreak. J Anim Ecol 68:382–389

    Article  Google Scholar 

  • Kanost MR, Jiang HB, Yu XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198:97–105

    Article  PubMed  CAS  Google Scholar 

  • Kapari L, Haukioja E, Rantala MJ, Ruuhola T (2006) Defoliating insect immune defense interacts with induced plant defense during a population outbreak. Ecology 87:291–296

    PubMed  Google Scholar 

  • Kenis M, Herz K, West RJ, Shaw MR (2005) Parasitoid assemblages reared from geometrid defoliators (Lepidoptera: Geometridae) of larch and fir in the alps. Agric For Entomol 7:307–318

    Article  Google Scholar 

  • Klemola T, Ruohomäki K, Andersson T, Neuvonen S (2004) Reduction in size and fecundity of the autumnal moth, Epirrita autumnata, in the increase phase of a population cycle. Oecologia 141:47–56

    Article  PubMed  Google Scholar 

  • Klemola T, Huitu O, Ruohomäki K (2006) Geographically partitioned spatial synchrony among cyclic moth populations. Oikos 114:349–359

    Article  Google Scholar 

  • Kraaijeveld AR, Godfray HCJ (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389:278–280

    Article  PubMed  CAS  Google Scholar 

  • Kurtz J, Wiesner A, Götz P, Sauer KP (2000) Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta: Mecoptera). Dev Comp Immunol 24:1–12

    Article  PubMed  CAS  Google Scholar 

  • Lavine MD, Beckage NE (1996) Temporal pattern of parasitism-induced immunosuppression in Manduca sexta larvae parasitized by Cotesia congregata. J Insect Physiol 42:41–51

    Article  CAS  Google Scholar 

  • Little TJ, Kraaijeveld AR (2004) Ecological and evolutionary implications of immunological priming in invertebrates. Trends Ecol Evol 19:58–60

    Article  PubMed  Google Scholar 

  • Little TJ, O’Connor B, Colegrave N, Watt K, Read AF (2003) Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol 13:489–492

    Article  PubMed  CAS  Google Scholar 

  • Marris GC, Bell HA, Naylor JM, Edwards JP (1999) The role of Pimpla hypochondriaca venom in the suppression of pupal Noctuid host immunity. Entomol Exp Appl 93:291–298

    Article  Google Scholar 

  • McKean KA, Nunney L (2005) Bateman’s principle and immunity: phenotypically plastic reproductive strategies predict changes in immunological sex differences. Evolution 59:1510–1517

    Article  PubMed  Google Scholar 

  • Moret Y, Siva-Jothy MT (2003) Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc R Soc Lond B 270:2475–2480

    Article  CAS  Google Scholar 

  • Neuvonen S, Niemelä P, Virtanen T (1999) Climatic change and insect outbreaks in boreal forests: the role of winter temperatures. Ecol Bull 47:63–67

    Google Scholar 

  • Pie MR, Rosengaus RB, Calleri DV, Traniello JFA (2005) Density and disease resistance in group-living insects: do eusocial species exhibit density-dependent prophylaxis? Ethol Ecol Evol 17:41–50

    Article  Google Scholar 

  • Prevost G, Eslin P, Doury G, Moreau SJM, Guillot S (2005) Asobara, braconid parasitoids of Drosophila larvae: unusual strategies to avoid encapsulation without VLPs. J Insect Physiol 51:171–179

    Article  PubMed  CAS  Google Scholar 

  • Rantala MJ, Vainikka A, Kortet R (2003) The role of juvenile hormone in immune function and pheromone production trade-offs: a test of the immunocompetence handicap principle. Proc R Soc Lond B 270:2257–2261

    Article  CAS  Google Scholar 

  • Reeson AF, Wilson K, Gunn A, Hails RS, Goulson D (1998) Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proc R Soc Lond B 265:1787–1791

    Article  Google Scholar 

  • Richards EH, Parkinson NM (2000) Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. J Invertebr Pathol 76:33–42

    Article  PubMed  CAS  Google Scholar 

  • Robb T, Forbes MR, Jamieson IG (2003) Greater cuticular melanism is not associated with greater immunogenic response in adults of the polymorphic mountain stone weta, Hemideina maori. Ecol Entomol 28:738–746

    Article  Google Scholar 

  • Rolff J (2001) Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can J Zool 79:2176–2180

    Article  Google Scholar 

  • Rolff J, Siva-Jothy MT (2003) Invertebrate ecological immunology. Science 301:472–475

    Article  PubMed  CAS  Google Scholar 

  • Ruohomäki K (1994) Larval parasitism in outbreaking and non-outbreaking populations of Epirrita autumnata (Lepidoptera, Geometridae). Entomol Fenn 15:27–34

    Google Scholar 

  • Ruohomäki K, Tanhuanpää M, Ayres MP, Kaitaniemi P, Tammaru T, Haukioja E (2000) Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. Popul Ecol 42:211–223

    Article  Google Scholar 

  • Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P (2005) Trans-generational immune priming in a social insect. Biol Lett 1:386–388

    Article  PubMed  Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551

    Article  PubMed  CAS  Google Scholar 

  • Selås V, Hogstad A, Kobro S, Rafoss T (2004) Can sunspot activity and ultraviolet-B radiation explain cyclic outbreaks of forest moth pest species?. Proc R Soc Lond B 271:1897–1901

    Article  Google Scholar 

  • Siva-Jothy MT, Thompson JJW (2002) Short-term nutrient deprivation affects immune function. Physiol Entomol 27:206–212

    Article  Google Scholar 

  • Siva-Jothy MT, Tsubaki Y, Hooper RE, Plaistow SJ (2001) Investment in immune function under chronic and acute immune challenge in an insect. Physiol Entomol 26:1–5

    Article  Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecological perspective. Adv Insect Physiol 32:1–48

    Article  CAS  Google Scholar 

  • Strand MR, Pech LL (1995) Immunological basis for compatibility in parasitoid host relationships. Annu Rev Entomol 40:31–56

    Article  PubMed  CAS  Google Scholar 

  • Tammaru T, Kaitaniemi P, Ruohomäki K (1996) Realized fecundity in Epirrita autumnata (Lepidoptera: Geometridae): relation to body size and consequences to population dynamics. Oikos 77:407–416

    Article  Google Scholar 

  • Tanhuanpää M, Ruohomäki K, Turchin P, Ayres MP, Bylund H, Kaitaniemi P, Tammaru T, Haukioja E (2002) Population cycles of the autumnal moth in Fennoscandia. In: Berryman AA (ed) Population cycles: the case for trophic interactions. Oxford University Press, New York, pp 142–154

    Google Scholar 

  • Teder T, Tanhuanpää M, Ruohomäki K, Kaitaniemi P, Henriksson J (2000) Temporal and spatial variation of larval parasitism in non-outbreaking populations of a folivorous moth. Oecologia 123:516–524

    Article  Google Scholar 

  • Tenow O (1972) The outbreaks of Oporinia autumnata Bkh. and Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zool Bidr Uppsala 2(Suppl.):1–107

    Google Scholar 

  • Webb BA, Luckhart S (1996) Factors mediating short- and long-term immune suppression in a parasitized insect. J Insect Physiol 42:33–40

    Article  CAS  Google Scholar 

  • Wilson K, Reeson AF (1998) Density-dependent prophylaxis: evidence from Lepidoptera–Baculovirus interactions?. Ecol Entomol 23:100–101

    Article  Google Scholar 

  • Wilson K, Cotter SC, Reeson AF, Pell JK (2001) Melanism and disease resistance in insects. Ecol Lett 4:637–649

    Article  Google Scholar 

  • Wilson K, Thomas MB, Blanford S, Doggett M, Simpson SJ, Moore SL (2002) Coping with crowds: density-dependent disease resistance in desert locusts. Proc Natl Acad Sci USA 99:5471–5475

    Article  PubMed  CAS  Google Scholar 

  • Wilson K, Knell R, Boots M, Koch-Osborne J (2003) Group living and investment in immune defence: an interspecific analysis. J Anim Ecol 72:133–143

    Article  Google Scholar 

  • Yourth CP, Forbes MR, Baker RL (2002) Sex differences in melanotic encapsulation responses (immunocompetence) in the damselfly Lester forcipatus Rambur. Can J Zool 80:1578–1583

    Article  Google Scholar 

  • Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22

    Article  PubMed  Google Scholar 

  • Zuk M, Simmons LW, Rotenberry JT, Stoehr AM (2004) Sex differences in immunity in two species of field crickets. Can J Zool 82:627–634

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Fiia Haavisto, Hansi Harjunharja, Otso Huitu, Reijo Jussila, Matti Ketola, Tanja Kyykkä, Elina Mäntylä, Markus J. Rantala, Teija Ruuhola, Mark R. Shaw and Ilari E. Sääksjärvi for their help during the study. Kevo Subarctic Research Institute is thanked for the use of facilities. Comments made by Erkki Haukioja, Lauri Kapari and Kevin O’Brien greatly improved the manuscript. This study was financially supported by the Academy of Finland (projects 111195 and 204190 to T.K. and 52340 to K.R.), Emil Aaltonen Foundation (grant to T.K.) and Turku University Foundation (grants to T.K. and K.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Klemola.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemola, T., Klemola, N., Andersson, T. et al. Does immune function influence population fluctuations and level of parasitism in the cyclic geometrid moth?. Popul Ecol 49, 165–178 (2007). https://doi.org/10.1007/s10144-007-0035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-007-0035-7

Keywords

Navigation