Advertisement

Population Ecology

, Volume 45, Issue 3, pp 197–204 | Cite as

Population dynamics of the solitary digger bee Andrena vaga Panzer (Hymenoptera, Andrenidae) studied using mark-recapture and nest counts

  • Inge Bischoff
Original Article

Abstract

The population size of the solitary digger bee Andrena vaga was documented using mark-recapture methods during 4 consecutive years (1996–1999). Additionally, the numbers of the parasitoids Nomada lathburiana and Bombylius major were estimated. For calculations of the daily population size, the Jolly-Seber model for open populations with time-dependent survival and capture rates was used. The mean daily population size corresponded well to the number of nests marked in the aggregation of A. vaga. The method of mark-recapture achieved the most accurate data when the number of sampling periods and the capture probability was high. The results document a decrease in population size of the investigated A. vaga aggregation during 4 successive years. A population increase of its parasitoids B. major is considered to be one reason for the population decline of A. vaga in 1999. The sex ratio of A. vaga was biased toward females, contrary to the expected higher number of males. Results of the mark-recapture studies showed that up to 50% of females left the aggregation or died at the beginning of the season. The females probably colonized new aggregations at distances further than 200 m away from their birth aggregation, as no marked females were observed in the environs of the study area. This behavior is interpreted as a parasite avoidance strategy. The bee populations in the study area form a web of interconnected aggregations. Apparently a flux of extinction and recolonization exists between the different aggregations.

Keywords

Bees Mark-recapture Population size Aggregation 

Notes

Acknowledgements

I am grateful to Dr. Andreas Kaiser (Institute of Zoology, University of Mayence), who assisted in analyzing the data using the computer programs “Mark” and “Jolly”. I further appreciate the comments and suggestions on this manuscript by Dr. Antje Bischoff, Dr. Irina Brake, Dr. Rainer Hutterer, Volker Mauss, Dr. Bernhard Misof, Dr. Robert Paxton, and Dr. Bradley Sinclair. This study was supported by a PhD grant from the Deutsche Bundesstiftung Umwelt.

References

  1. Alfken JD (1902) Die Nomada-Arten Nordwest-Deutschlands als Schmarotzer. Z Syst Hymenopt Dipterol 2:5–10Google Scholar
  2. Arnason AN, Schwarz CJ (1987) POPAN-3. Extended analysis and testing features for POPAN-2. Charles Babbage Research Center, St. Norbert, Manitoba, CanadaGoogle Scholar
  3. Batra SWT (1999) Biology of Andrena (Scapteropsis) fenningeri Viereck (Hymenoptera: Andrenidae), harbinger of spring. Proc Entomol Soc Wash 101:106–122Google Scholar
  4. Begon M (1979) Investigating animal abundance: capture-recapture for biologists. Arnold, LondonGoogle Scholar
  5. Bischoff I (2000) Untersuchungen zur Nisthabitatwahl von Andrena vaga und Colletes cunicularius (Apidae) in der Wahner Heide (Rheinland). Beitr Hymenopt Stuttg 2000:31–36Google Scholar
  6. Bischoff I (2001) Populationsdynamik, Sammelstrategie und Nisthabitatwahl ausgewählter Wildbienen (Hymenoptera, Apidae) in der Wahner Heide (Rheinland). Shaker, AachenGoogle Scholar
  7. Bischoff I, Feltgen K, Breckner D (2003) Foraging strategy and pollen preferences of Andrena vaga and Colletes cunicularius (Hymenoptera, Apidae). J Hymenopt Res (in press)Google Scholar
  8. Bohart GE, Stephen WP, Eppley RK (1960) The biology of Heterostylum robustum (Diptera: Bombyliidae), a parasite of the alkali bee. Ann Entomol Soc Am 53:425–435Google Scholar
  9. Bradley JS (1985) Comparative demography of four species of grasshoppers on a common site. In: Cook LM (ed) Case studies in population biology. Manchester University Press, Manchester, pp 61–100Google Scholar
  10. Carothers AD (1973) The effects of unequal catchability on Jolly-Seber estimates. Biometrics 29:79–100Google Scholar
  11. Cooch E, White G (1998) Mark. A gentle introduction. http://www.biol.sfu.ca/cmr/mark. Cited November 1998Google Scholar
  12. Gebhardt M, Röhr G (1987) Zur Bionomie der Sandbienen Andrena clarkella (Kirby), A. cineraria (Linnaeus), A. fuscipes (Kirby) und ihrer Kuckucksbienen (Hymenoptera: Apoidea). Drosera 11:89–114Google Scholar
  13. Heefetz A, Tengö J (1992) Dispersed versus gregarious nesting strategies in the mason bee Chalicodoma siculum. J Zool (Lond) 226:529–537Google Scholar
  14. Hovestadt T (1990) Die Bedeutung zufälligen Aussterbens für die Naturschutzplanung. Natur Landschaft 65:3–8Google Scholar
  15. Interkommunaler Arbeitskreis Wahner Heide (1989) Die Wahner Heide—eine rheinische Landschaft im Spannungsfeld der Interessen. Rheinland, CologneGoogle Scholar
  16. Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52:225–247Google Scholar
  17. Linsley EG, MacSwain JW (1955) The habits of Nomada opacella Timberlake with notes on other species (Hym., Anthophoridae). Wasmann J Biol 13:253–276Google Scholar
  18. Malyshev SI (1926) The nesting habits of Andrena F. (Hymenoptera, Apoidea) (in Russian with English summary). Trav Soc Nat Leningrad, Sect Zool Physiol 56:25–78Google Scholar
  19. Michener CD, Rettenmeyer CW (1956) The ethology of Andrena erythronii with comparative data on other species (Hymenoptera, Andrenidae). Univ Kans Sci Bull 37:645–684Google Scholar
  20. Moeschler A (1938) Ein Beitrag zur Bienenfauna in Ostpreussen, insbesondere der Kurischen Nehrung. Schr Phys Ökon Ges Königsberg 70:243–288Google Scholar
  21. Mohra C, Fellendorf M, Paxton R (2001) Microsatellite analysis of the population genetic structure of Andrena vaga, a solitary bee that nests in aggregations. Proc JUSSI, September 2001Google Scholar
  22. Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, New YorkGoogle Scholar
  23. Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture-recapture experiments. Wildl Monogr 107:1–97Google Scholar
  24. Popova LM (1983) A contribution to the knowledge of andrenid bees biology in the middle Volga area (in Russian). Vest Zool 1983:46–50Google Scholar
  25. Rosenheim JA (1990) Density-dependent parasitism and the evolution of aggregated nesting in the solitary Hymenoptera. Ann Entomol Soc Am 83:277–286Google Scholar
  26. Rozen JG (1977) Immature stages of and ethological observations on the cleptoparasitic bee tribe Nomadini (Apoidea, Anthophoridae). Am Mus Novit 2638:1–16Google Scholar
  27. Schönitzer K, Klinksik C (1990) The ethology of the solitary bee Andrena nycthemera Imhoff, 1866 (Hymenoptera, Apoidea). Entomofauna 11:377–427Google Scholar
  28. Schremmer F (1963) Gezielter Abwurf getarnter Eier bei Wollschwebern (Dipt. Bombyliidae). Verh Dtsch Zool Ges 1963:291–303Google Scholar
  29. Seber GAF (1965) A note on the multiple-recapture census. Biometrika 52:249–259Google Scholar
  30. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134Google Scholar
  31. Soulé JE (1985) What is conservation biology? Bioscience 35:727–734Google Scholar
  32. Sutherland WJ (1996) Ecological census techniques. Cambridge University Press, CambridgeGoogle Scholar
  33. Ulrich W (1956) Unsere Strepsipteren-Arbeiten. Zool Beitr 2:176–255Google Scholar
  34. Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manage 47:893–901Google Scholar
  35. Vleugel DA (1947) Waarnemingen aan het gedrag van de Grijze Graafbij (Andrena vaga Panz.) (Hym.). Entomol Ber 278:185–192Google Scholar
  36. Watt WB, Chew FS, Snyder LRG, Watt AG, Rothschild DE (1977) Population structure of pierid butterflies. Oecologia 27:1–22Google Scholar
  37. Wcislo WT, Minckley RL, Leschen RAB, Reyes S (1994) Rates of parasitism by natural enemies of a solitary bee, Dieunomia triangulifera (Hymenoptera, Coleoptera, and Diptera) in relation to phenologies. Sociobiol 23:265–273Google Scholar
  38. Westrich P (1990) Die Wildbienen Baden-Württembergs, vol 1/2, 2nd edn. Ulmer, StuttgartGoogle Scholar
  39. Willmer PG (1983) Thermal constraints on activity patterns in nectar-feeding insects. Ecol Entomol 8:455–469Google Scholar

Copyright information

© The Society of Population Ecology and Springer-Verlag Tokyo 2004

Authors and Affiliations

  1. 1.Zoologisches Forschungsinstitut und Museum Alexander Koenig BonnGermany

Personalised recommendations