Skip to main content

Advertisement

Log in

Temporal change of serum xanthine oxidase levels and its relation to clinical outcome of severe traumatic brain injury: a prospective cohort study

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Xanthine oxidase (XO) may be involved in the induction of oxidative stress and inflammation. We measured serum XO levels at multiple days to determine whether it is associated with the severity and prognosis of severe traumatic brain injury (sTBI). In this prospective cohort study, we quantified serum XO levels in 112 sTBI patients and 112 controls. Serum XO levels of patients were measured at admission and at days 1, 3, 5, 7, and 10 after sTBI. Extended Glasgow outcome scale scores of 1–4 at post-trauma 180 days were defined as a poor prognosis. Multivariate analysis was employed to determine the relationship between poor prognosis and serum XO levels at multiple days. Serum XO levels were significantly increased at admission among patients, afterwards elevated gradually, peaked at day 3, and then diminished gradually until day 10, and were substantially higher during 10 days in patients than in controls. Serum XO levels at 6 different days were all correlated with admission Rotterdam computed tomography (CT) scores and Glasgow coma scale (GCS) scores. Serum XO levels at 6 different days were all substantially higher in patients with poor prognosis than in those with good prognosis. Serum XO levels at days 7 and 10, but not at days 1, 3, and 5, had significantly lower area under receiver operating characteristic (AUC) than those at admission. Serum XO levels at admission and at days 1 and 3, but not at day 5, were independently associated with 180-day poor prognosis. Prognostic prediction model containing GCS scores, Rotterdam CT scores, and serum XO levels at admission (or at days 1 and 3) showed substantially higher AUC than GCS scores and Rotterdam CT scores alone. The models were visually described using nomograms, which were comparatively stable under calibration curve and were relatively of clinical benefit under decision curve. Elevated serum XO levels during early period of sTBI are more closely associated with trauma severity and clinical adverse outcomes, assuming that serum XO may serve as a potential prognostic biomarker in sTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due to that they are personal data but are available from the corresponding author on reasonable request.

References

  1. Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V et al (2016) Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health 1(2):e76–e83. https://doi.org/10.1016/S2468-2667(16)30017-2

    Article  PubMed  Google Scholar 

  2. Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104(2):213–238. https://doi.org/10.1016/j.mcna.2019.11.001

    Article  PubMed  Google Scholar 

  3. Khellaf A, Khan DZ, Helmy A (2019) Recent advances in traumatic brain injury. J Neurol 266(11):2878–2889. https://doi.org/10.1007/s00415-019-09541-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas I, Dickens AM, Posti JP, Czeiter E, Duberg D, Sinioja T et al (2022) Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun 13(1):2545. https://doi.org/10.1038/s41467-022-30227-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rakhit S, Nordness MF, Lombardo SR, Cook M, Smith L, Patel MB (2021) Management and challenges of severe traumatic brain injury. Semin Respir Crit Care Med 42(1):127–144. https://doi.org/10.1055/s-0040-1716493

    Article  PubMed  Google Scholar 

  6. Zetterberg H, Blennow K (2015) Fluid markers of traumatic brain injury. Mol Cell Neurosci 66(Pt B):99–102. https://doi.org/10.1016/j.mcn.2015.02.003

    Article  PubMed  CAS  Google Scholar 

  7. Lorente L, Martín MM, Pérez-Cejas A, González-Rivero AF, Abreu-González P, Ramos L et al (2020) Traumatic brain injury patients mortality and serum total antioxidant capacity. Brain Sci 10(2):110. https://doi.org/10.3390/brainsci10020110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Feng MJ, Ning WB, Wang W, Lv ZH, Liu XB, Zhu Y et al (2018) Serum S100A12 as a prognostic biomarker of severe traumatic brain injury. Clin Chim Acta 480:84–91. https://doi.org/10.1016/j.cca.2018.01.044

    Article  PubMed  CAS  Google Scholar 

  9. Strathmann FG, Schulte S, Goerl K, Petron DJ (2014) Blood-based biomarkers for traumatic brain injury: evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 47(10-11):876–888. https://doi.org/10.1016/j.clinbiochem.2014.01.028

    Article  PubMed  CAS  Google Scholar 

  10. Yu H, Chen X, Guo X, Chen D, Jiang L, Qi Y et al (2023) The clinical value of serum xanthine oxidase levels in patients with acute ischemic stroke. Redox Biol 60:102623. https://doi.org/10.1016/j.redox.2023.102623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Battelli MG, Polito L, Bolognesi A (2014) Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress. Atherosclerosis 237(2):562–567. https://doi.org/10.1016/j.atherosclerosis.2014.10.006

    Article  PubMed  CAS  Google Scholar 

  12. Schuchardt M, Herrmann J, Tolle M, van der Giet M (2017) Xanthine oxidase and its role as target in cardiovascular disease: cardiovascular protection by enzyme inhibition? Curr Pharm Des 23(23):3391–3404. https://doi.org/10.2174/1381612823666170417130115

    Article  PubMed  CAS  Google Scholar 

  13. Lindsay S, Liu TH, Xu JA, Marshall PA, Thompson JK, Parks DA et al (1991) Role of xanthine dehydrogenase and oxidase in focal cerebral ischemic injury to rat. Am J Physiol 261(6 Pt 2):H2051–H2057. https://doi.org/10.1152/ajpheart.1991.261.6.H2051

    Article  PubMed  CAS  Google Scholar 

  14. Kertmen H, Gürer B, Yilmaz ER, Kanat MA, Arikok AT, Ergüder BI et al (2015) Antioxidant and antiapoptotic effects of darbepoetin-α against traumatic brain injury in rats. Arch Med Sci 11(5):1119–1128. https://doi.org/10.5114/aoms.2015.54869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Maciejczyk M, Nesterowicz M, Zalewska A, Biedrzycki G, Gerreth P, Hojan K et al (2022) Salivary xanthine oxidase as a potential biomarker in stroke diagnostics. Front Immunol. 13:897413. https://doi.org/10.3389/fimmu.2022.897413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Aygul R, Demircan B, Erdem F, Ulvi H, Yildirim A, Demirbas F (2005) Plasma values of oxidants and antioxidants in acute brain hemorrhage: role of free radicals in the development of brain injury. Biol Trace Elem Res 108(1-3):43–52. https://doi.org/10.1385/BTER:108:1-3:043

    Article  PubMed  CAS  Google Scholar 

  17. Kim P, Yaksh TL, Romero SD, Sundt TM Jr (1987) Production of uric acid in cerebrospinal fluid after subarachnoid hemorrhage in dogs: investigation of the possible role of xanthine oxidase in chronic vasospasm. Neurosurgery 21(1):39–44. https://doi.org/10.1227/00006123-198707000-00008

    Article  PubMed  CAS  Google Scholar 

  18. Wilson L, Boase K, Nelson LD, Temkin NR, Giacino JT, Markowitz AJ et al (2021) A manual for the Glasgow outcome scale-extended interview. J Neurotrauma 38(17):2435–2446. https://doi.org/10.1089/neu.2020.7527

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yeatts SD, Martin RH, Meurer W, Silbergleit R, Rockswold GL, Barsan WG et al (2020) Sliding scoring of the Glasgow outcome scale-extended as primary outcome in traumatic brain injury trials. J Neurotrauma 37(24):2674–2679. https://doi.org/10.1089/neu.2019.6969

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klisic A, Kocic G, Kavaric N, Jovanovic M, Stanisic V, Ninic A (2018) Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2. Clin Exp Med 18(2):283–290. https://doi.org/10.1007/s10238-017-0483-0

    Article  PubMed  CAS  Google Scholar 

  21. Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN et al (2015) Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nat Commun 6:6555. https://doi.org/10.1038/ncomms7555

    Article  PubMed  CAS  Google Scholar 

  22. Fesharaki-Zadeh A (2022) Oxidative stress in traumatic brain injury. Int J Mol Sci 23(21):13000. https://doi.org/10.3390/ijms232113000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Angeloni C, Prata C, Dalla Sega FV, Piperno R, Hrelia S (2015) Traumatic brain injury and NADPH oxidase: a deep relationship. Oxid Med Cell Longev 2015:370312. https://doi.org/10.1155/2015/370312

    Article  PubMed Central  Google Scholar 

  24. Li L, Tan J, Miao Y, Lei P, Zhang Q (2015) ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 35(5):615–621. https://doi.org/10.1007/s10571-015-0166-x

    Article  PubMed  CAS  Google Scholar 

  25. Ojha R, Singh J, Ojha A, Singh H, Sharma S, Nepali K (2017) An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin Ther Pat 27(3):311–345. https://doi.org/10.1080/13543776.2017.1261111

    Article  PubMed  CAS  Google Scholar 

  26. Malik N, Dhiman P, Sobarzo-Sanchez E, Khatkar A (2018) Flavonoids and anthranquinones as xanthine oxidase and monoamine oxidase inhibitors: a new approach towards inflammation and oxidative stress. Curr Top Med Chem 18(25):2154–2164. https://doi.org/10.2174/1568026619666181120143050

    Article  PubMed  CAS  Google Scholar 

  27. Britnell SR, Chillari KA, Brown JN (2018) The role of xanthine oxidase inhibitors in patients with history of stroke: a systematic review. Curr Vasc Pharmacol 16(6):583–588. https://doi.org/10.2174/1570161115666170919183657

    Article  PubMed  CAS  Google Scholar 

  28. Kovac S, Domijan AM, Walker MC, Abramov AY (2014) Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 5(10):e1442. https://doi.org/10.1038/cddis.2014.390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Michel TM, Camara S, Tatschner T, Frangou S, Sheldrick AJ, Riederer P et al (2010) Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 11(2 Pt 2):314–320. https://doi.org/10.3109/15622970802123695

    Article  PubMed  Google Scholar 

  30. Lvovskaya EI, Derginskyi NV, Sadova VA, Symnaya DB (2016) Prognostic value of the parameters of free radical oxidation in traumatic brain injury. Biomed Khim 62(1):107–111. Russian. https://doi.org/10.18097/PBMC20166201107

    Article  PubMed  CAS  Google Scholar 

  31. Ty MC, Zuniga M, Götz A, Kayal S, Sahu PK, Mohanty A et al (2019) Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol Med. 11(8):e9903. https://doi.org/10.15252/emmm.201809903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Liu J, Wang C, Liu F, Lu Y, Cheng J (2015) Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem 407(9):2569–2579. https://doi.org/10.1007/s00216-015-8481-0

    Article  PubMed  CAS  Google Scholar 

  33. Xu H, Li C, Mozziconacci O, Zhu R, Xu Y, Tang Y et al (2019) Xanthine oxidase-mediated oxidative stress promotes cancer cell-specific apoptosis. Free Radic Biol Med 139:70–79. https://doi.org/10.1016/j.freeradbiomed.2019.05.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Murata M, Fukushima K, Takao T, Seki H, Takeda S, Wake N (2013) Oxidative stress produced by xanthine oxidase induces apoptosis in human extravillous trophoblast cells. J Reprod Dev 59(1):7–13. https://doi.org/10.1262/jrd.2012-053

    Article  PubMed  CAS  Google Scholar 

  35. Lei J, Zhang X, Tan R, Li Y, Zhao K, Niu H (2022) Levels of lncRNA GAS5 in plasma of patients with severe traumatic brain injury: correlation with systemic inflammation and early Outcome. J Clin Med 11(12):3319. https://doi.org/10.3390/jcm11123319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rodney T, Osier N, Gill J (2018) Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: a review. Cytokine 110:248–256. https://doi.org/10.1016/j.cyto.2018.01.012

    Article  PubMed  CAS  Google Scholar 

  37. Yue JK, Kobeissy FH, Jain S, Sun X, Phelps RRL, Korley FK et al (2023) Neuroinflammatory biomarkers for traumatic brain injury diagnosis and prognosis: a TRACK-TBI pilot study. Neurotrauma Rep 4(1):171–183. https://doi.org/10.1089/neur.2022.0060

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all participants for providing us with their clinical information.

Funding

This work is financially supported by Key Research and Development Projects of Zhejiang Province (No. 2020C03071) and the Construction Fund of Medical Key Disciplines of Hangzhou (No. OO20200485, No. OO20200055).

Author information

Authors and Affiliations

Authors

Contributions

W.Y., Q.D., and X.D. conceptualized and designed the study; T.Y., H.S., Z.W., S.Z., and Z.C. implemented the study and collected the data; T.Y., H.S., and Z.W. wrote the first draft of the paper and critically revised the manuscript. All the authors reviewed and approved the final draft of the manuscript. T.Y. and H.S. contributed equally to this work.

Corresponding authors

Correspondence to Quan Du or Xiaoqiao Dong.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Institutional Review Committee of the Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine (Grant No. IRB#2021-20210603-01). The protocol was conducted in accordance with the Declaration of Helsinki and its later amends. We acquired written informed consent to participate in the current study from legal representatives of patients or controls themselves.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Shan, H., Wang, Z. et al. Temporal change of serum xanthine oxidase levels and its relation to clinical outcome of severe traumatic brain injury: a prospective cohort study. Neurosurg Rev 46, 320 (2023). https://doi.org/10.1007/s10143-023-02233-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02233-8

Keywords

Navigation