Skip to main content

Advertisement

Log in

Construction and validation of a predictive model of pneumonia for ICU patients with traumatic brain injury (TBI)

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The incidence of pneumonia in ICU patients with TBI is very high, seriously affecting the prognosis. This study aims to construct a predictive model for pneumonia in ICU patients with TBI and provide help for the prevention of TBI-related pneumonia.

Clinical data of ICU patients with TBI were collected from the Medical Information Mart for Intensive Care (MIMIC)-IV database and hospital data. Variables were screened by lasso and multivariate logistic regression to construct a predictive nomogram model, verified in internal validation cohort and external validation cohort by receiver operator characteristic (ROC) curve, calibration curve and decision curve analysis (DCA).

A total of 1850 ICU patients with TBI were enrolled in the study from the MIMIC-IV database, including 1298 in the training cohort and 552 in internal validation cohort. The external validation cohort included 240 ICU patients with TBI from hospital data. Nine variables were selected from the training cohort by lasso regression and multivariate logistic regression, and a pneumonia prediction nomogram was constructed. This nomogram has a high discrimination in training, internal validation and external validation cohorts (AUC = 0.857, 0.877, 0.836). The calibration curve and DCA showed that this nomogram had a high calibration and better clinical decision-making efficiency.

The nomogram showed excellent discrimination and clinical utility to predict pneumonia, and could identify pneumonia high-risk patients early, thus providing personalised treatment strategies for ICU patients with TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets presented in the current study are available in the MIMIC-IV database. (https://physionet.org/content/mimiciv/2.2/).

References 

  1. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 148(3):255–68. https://doi.org/10.1007/s00701-005-0651-y

    Article  PubMed  CAS  Google Scholar 

  2. Tagliaferri F, Peeters W, van den Brande R et al (2015) Epidemiology of traumatic brain injury in Europe. Acta Neurochir (Wien) 157(10):1683–1696. https://doi.org/10.1007/s00701-015-2512-7

    Article  Google Scholar 

  3. Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM (2017) Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol 313(1):L1–L15. https://doi.org/10.1152/ajplung.00485.2016

    Article  PubMed  Google Scholar 

  4. Jovanovic B, Milan Z, Markovic-Denic L et al (2015) Risk factors for ventilator-associated pneumonia in patients with severe traumatic brain injury in a Serbian trauma centre. Int J Infect Dis 38:46–51. https://doi.org/10.1016/j.ijid.2015.07.005

    Article  PubMed  Google Scholar 

  5. Kesinger MR, Kumar RG, Wagner AK et al (2015) Hospital-acquired pneumonia is an independent predictor of poor global outcome in severe traumatic brain injury up to 5 years after discharge. J Trauma Acute Care Surg 78(2):396–402. https://doi.org/10.1097/TA.0000000000000526

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kumar RG, Kesinger MR, Juengst SB et al (2020) Effects of hospital-acquired pneumonia on long-term recovery and hospital resource utilization following moderate to severe traumatic brain injury. J Trauma Acute Care Surg 88(4):491–500. https://doi.org/10.1097/TA.0000000000002562

    Article  PubMed  PubMed Central  Google Scholar 

  7. Torres A, Niederman MS, Chastre J et al (2017) International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 50(3):1700582. https://doi.org/10.1183/13993003.00582-2017

    Article  PubMed  CAS  Google Scholar 

  8. Schwarz S (2016) Prophylactic antibiotic therapy for preventing poststroke infection. Neurotherapeutics 13(4):783–790. https://doi.org/10.1007/s13311-016-0466-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kalra L, Irshad S, Hodsoll J et al (2015) Prophylactic antibiotics after acute stroke for reducing pneumonia in patients with dysphagia (STROKE-INF): a prospective, cluster-randomised, open-label, masked endpoint, controlled clinical trial. Lancet 386(10006):1835–1844. https://doi.org/10.1016/S0140-6736(15)00126-9

    Article  PubMed  Google Scholar 

  10. Chieregato A, Malacarne P, Cocciolo F et al (2017) Aggressive versus conservative antibiotic use to prevent and treat ventilator-associated pneumonia in patients with severe traumatic brain injury: comparison of two case series. Minerva Anestesiol 83(6):553–562. https://doi.org/10.23736/S0375-9393.17.11068-0

    Article  PubMed  Google Scholar 

  11. Poole D, Chieregato A, Langer M et al (2014) Systematic review of the literature and evidence-based recommendations for antibiotic prophylaxis in trauma: results from an Italian consensus of experts. PLoS ONE 9(11):e113676. https://doi.org/10.1371/journal.pone.0113676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Robba C, Rebora P, Banzato E et al (2020) Incidence, risk factors, and effects on outcome of ventilator-associated pneumonia in patients with traumatic brain injury: analysis of a large, multicenter, prospective, observational longitudinal study. Chest 158(6):2292–2303. https://doi.org/10.1016/j.chest.2020.06.064

    Article  PubMed  CAS  Google Scholar 

  13. Dragan V, Wei Y, Elligsen M, Kiss A, Walker SAN, Leis JA (2018) Prophylactic antimicrobial therapy for acute aspiration pneumonitis. Clin Infect Dis 67(4):513–518. https://doi.org/10.1093/cid/ciy120

    Article  PubMed  CAS  Google Scholar 

  14. Reizine F, Asehnoune K, Roquilly A et al (2019) Effects of antibiotic prophylaxis on ventilator-associated pneumonia in severe traumatic brain injury. A post hoc analysis of two trials. J Crit Care. 50:221–226. https://doi.org/10.1016/j.jcrc.2018.12.010

    Article  PubMed  CAS  Google Scholar 

  15. Zaragoza R, Vidal-Cortés P, Aguilar G et al (2020) Update of the treatment of nosocomial pneumonia in the ICU. Crit Care 24(1):383. https://doi.org/10.1186/s13054-020-03091-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Liu C, Xiao W, Song T, Wang S (2020) Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis. Neurocrit Care 32(1):272–285. https://doi.org/10.1007/s12028-019-00773-w

    Article  PubMed  CAS  Google Scholar 

  17. Johnson AEW, Bulgarelli L, Shen L et al (2023) MIMIC-IV, a freely accessible electronic health record dataset. Sci Data 10:1. https://doi.org/10.1038/s41597-022-01899-x

  18. Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 7(350):g7594. https://doi.org/10.1136/bmj.g7594

    Article  Google Scholar 

  19. Mandell LA, Wunderink RG, Anzueto A et al (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44(Suppl 2):S27-72. https://doi.org/10.1086/511159

    Article  PubMed  CAS  Google Scholar 

  20. Wu H, Geng X, Liu C et al (2022) Effect of folic acid treatment for patients with traumatic brain injury (TBI)-related hospital acquired pneumonia (HAP): a retrospective cohort study. J Clin Med 11(24):7403. https://doi.org/10.3390/jcm11247403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bouras M, Asehnoune K, Roquilly A (2022) Immune modulation after traumatic brain injury. Front Med (Lausanne) 1(9):995044. https://doi.org/10.3389/fmed.2022.995044

    Article  Google Scholar 

  22. Ritzel RM, Doran SJ, Barrett JP et al (2018) Chronic alterations in systemic immune function after traumatic brain injury. J Neurotrauma 35(13):1419–1436. https://doi.org/10.1089/neu.2017.5399

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6(10):775–786. https://doi.org/10.1038/nrn1765

    Article  PubMed  CAS  Google Scholar 

  24. Hall S, Kumaria A, Belli A (2014) The role of vagus nerve overactivity in the increased incidence of pneumonia following traumatic brain injury. Br J Neurosurg 28(2):181–186. https://doi.org/10.3109/02688697.2013.835373

    Article  PubMed  Google Scholar 

  25. Prass K, Meisel C, Höflich C et al (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198(5):725–736. https://doi.org/10.1084/jem.20021098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sharma R, Shultz SR, Robinson MJ et al (2019) Infections after a traumatic brain injury: the complex interplay between the immune and neurological systems. Brain Behav Immun 79:63–74. https://doi.org/10.1016/j.bbi.2019.04.034

    Article  PubMed  Google Scholar 

  27. Komisarow JM, Chen F, Vavilala MS, Laskowitz D, James ML, Krishnamoorthy V (2022) Epidemiology and outcomes of acute respiratory distress syndrome following isolated severe traumatic brain injury. J Intensive Care Med 37(1):68–74. https://doi.org/10.1177/0885066620972001

    Article  PubMed  Google Scholar 

  28. Engel O, Akyüz L, da Costa Goncalves AC et al (2015) Cholinergic pathway suppresses pulmonary innate immunity facilitating pneumonia after stroke. Stroke 46(11):3232–3240. https://doi.org/10.1161/STROKEAHA.115.008989

    Article  PubMed  CAS  Google Scholar 

  29. Kox M, Pompe JC, Pickkers P, Hoedemaekers CW, van Vugt AB, van der Hoeven JG (2008) Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury. Neurology 70(6):480–485. https://doi.org/10.1212/01.wnl.0000279479.69502.3e

    Article  PubMed  CAS  Google Scholar 

  30. Hendricks HT, Heeren AH, Vos PE (2010) Dysautonomia after severe traumatic brain injury. Eur J Neurol 17(9):1172–1177. https://doi.org/10.1111/j.1468-1331.2010.02989.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xin Geng, Hao Wu contributed equally to this work. Xin Geng and Xiangyu Wang proposed and completed the entire study design. Xin Geng, Augustine K. Ballah wrote the main manuscript text. Xin Geng extracted the data from the MIMIC database. Wenqiang Che, Shuaishuai Wu, Tengyue Fu, Ning Li, Linrui Qi participated in processing the data and formulating the analysis strategy. Chenan Liu did the statistical analysis. Xiaocong Wei, Yonghong Wang, Rui Cheng, Zhigang Pang, Hongming Ji, Hao Wu, Xiangyu Wang participated in the treatment of TBI patients and collection of clinical data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yonghong Wang or Xiangyu Wang.

Ethics declarations

Ethics approval and consent to participate

The establishment of MIMIC-IV database was approved by the Massachusetts Institute of Technology (Cambridge, MA) and Beth Israel Deaconess Medical Center (Boston, MA), and consent was obtained for the original data collection. Research on clinical data approved by Shanxi Bethune Hospital Ethics Committee (YXLL-2022–124) and Shanxi Provincial People’s Hospital Ethics Committee (2022–395).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 979 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Wu, H., Liu, C. et al. Construction and validation of a predictive model of pneumonia for ICU patients with traumatic brain injury (TBI). Neurosurg Rev 46, 308 (2023). https://doi.org/10.1007/s10143-023-02208-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02208-9

Keywords

Navigation