Skip to main content

Advertisement

Log in

Neuroimaging of neuropathic pain: review of current status and future directions

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The goal of this review is to discuss the various imaging modalities to study neuropathic pain and its future implication in understanding pain network, for the diagnosis and management of patients with chronic neuropathic pain. Neuropathic pain is characterized by pain secondary to lesions or dysfunction of the central nervous system (CNS) or the peripheral nervous system. Neuropathic pain is generally chronic and disabling, and responds poorly to conventional treatment. Although our understanding of the imaging changes in chronic pain state is evolving, we still face practical challenges in implementing these finding to objectively diagnose and follow treatment response in patients with chronic pain and to guide targeted and individualized treatment to each chronic pain condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

S I:

Primary somatosensory cortex

S II:

Secondary somatosensory cortex

PFC:

Prefrontal cortex

ACC:

Anterior cingulate cortex

CC:

Cingulate cortex

IPL:

Inferior parietal lobule

SPL:

Superior parietal lobule

BA:

Brodmann area

References

  1. IASP. The IASP Taxonomy. 2011 1/7/2016]; Available from: http://www.iasp-pain.org/Taxonomy

  2. Tracey I (2007) Neuroimaging of pain mechanisms. [review] [59 refs]. Current Opinion in Supportive & Palliative Care 1(2):109–116

    Article  Google Scholar 

  3. Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. NeuroImage 37:S80–S88

    Article  PubMed  Google Scholar 

  4. Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102(1–2):1–8

    Article  PubMed  Google Scholar 

  5. Fomberstein K, Qadri S, Ramani R (2013) Functional MRI and pain. Current Opinion in Anesthesiology 26(5):588–593

    Article  PubMed  Google Scholar 

  6. May A (2008) Chronic pain may change the structure of the brain. Pain 137(1):7–15

    Article  PubMed  Google Scholar 

  7. Tseng MT et al (2013) fMRI evidence of degeneration-induced neuropathic pain in diabetes: enhanced limbic and striatal activations. Hum Brain Mapp 34(10):2733–2746

    Article  PubMed  Google Scholar 

  8. Lanz S, Seifert F, Maihöfner C (2011) Brain activity associated with pain, hyperalgesia and allodynia: an ALE meta-analysis. J Neural Transm 118(8):1139–1154

    Article  PubMed  Google Scholar 

  9. Hsieh J-C et al (1996) Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain 64(2):303–314

    Article  PubMed  CAS  Google Scholar 

  10. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353(9168):1959–1964

    Article  PubMed  CAS  Google Scholar 

  11. Jensen TS et al (2001) The clinical picture of neuropathic pain. Eur J Pharmacol 429(1):1–11

    Article  PubMed  CAS  Google Scholar 

  12. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55(3):377–391

    Article  PubMed  CAS  Google Scholar 

  13. Baliki MN et al (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Borsook D, Becerra L (2011) How close are we in utilizing functional neuroimaging in routine clinical diagnosis of neuropathic pain? Curr Pain Headache Rep 15(3):223–229

    Article  PubMed  Google Scholar 

  15. Giesecke T et al (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis & Rheumatism 50(2):613–623

    Article  Google Scholar 

  16. Apkarian AV et al (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–463

    Article  PubMed  Google Scholar 

  17. Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A 95(3):773–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Turner R (1992) Magnetic resonance imaging of brain function. Am J Physiol Imaging 7(3–4):136–145

    PubMed  CAS  Google Scholar 

  19. Davis KD (2011) Neuroimaging of pain: what does it tell us? Curr Opin Support Palliat Care 5(2)

  20. Sundgren PC et al (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46(5):339–350

    Article  PubMed  CAS  Google Scholar 

  21. Apkarian AV et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415

    Article  PubMed  CAS  Google Scholar 

  22. Geha PY et al (2008) The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60(4):570–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yoon EJ et al (2013) Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res 1540:64–73

    Article  PubMed  CAS  Google Scholar 

  24. Iannetti GD, Mouraux A (2010) From the neuromatrix to the pain matrix (and back). Exp Brain Res 205(1):1–12

    Article  PubMed  CAS  Google Scholar 

  25. Treede R-D et al (1999) The cortical representation of pain. Pain 79(2):105–111

    Article  PubMed  CAS  Google Scholar 

  26. Mouraux A et al (2011) A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage 54(3):2237–2249

    Article  PubMed  Google Scholar 

  27. Tracey I (2005) Nociceptive processing in the human brain. Curr Opin Neurobiol 15(4):478–487

    Article  PubMed  CAS  Google Scholar 

  28. Wager TD et al (2013) An fMRI-based neurologic signature of physical pain. N Engl J Med 368(15):1388–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Apkarian AV (2013) A brain signature for acute pain. Trends Cogn Sci 17(7):309–310

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin C-s (2014) Brain signature of chronic orofacial pain: a systematic review and meta-analysis on neuroimaging research of trigeminal neuropathic pain and temporomandibular joint disorders. PLoS One 9(4):e94300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Casey KL et al (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71(2):802–807

    Article  PubMed  CAS  Google Scholar 

  32. Coghill RC et al (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82(4):1934–1943

    Article  PubMed  CAS  Google Scholar 

  33. Vogt BA, Derbyshire S, Jones AK (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8(7):1461–1473

    Article  PubMed  CAS  Google Scholar 

  34. Tolle TR et al (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45(1):40–47

    Article  PubMed  CAS  Google Scholar 

  35. Lozano AM, Gildenberg PL and Tasker RR (2009) Textbook of stereotactic and functional neurosurgery. Vol. 1%@ 3540699597: Springer Science & Business Media

  36. Peyron R et al (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122(Pt 9):1765–1780

    Article  PubMed  Google Scholar 

  37. Posner MI, Dehaene S (1994) Attentional networks. Trends Neurosci 17(2):75–79

    Article  PubMed  CAS  Google Scholar 

  38. Miron D, Duncan GH, Bushnell MC (1989) Effects of attention on the intensity and unpleasantness of thermal pain. Pain 39(3):345–352

    Article  PubMed  CAS  Google Scholar 

  39. Bantick SJ et al (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125(Pt 2):310–319

    Article  PubMed  Google Scholar 

  40. Davis KD et al (1997) Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 77(6):3370–3380

    Article  PubMed  CAS  Google Scholar 

  41. Drevets WC et al (1995) Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature 373(6511):249–252

    Article  PubMed  CAS  Google Scholar 

  42. Chua P et al (1999) A functional anatomy of anticipatory anxiety. NeuroImage 9(6 Pt 1):563–571

    Article  PubMed  CAS  Google Scholar 

  43. Hsieh JC, Stone-Elander S, Ingvar M (1999) Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neurosci Lett 262(1):61–64

    Article  PubMed  CAS  Google Scholar 

  44. Derbyshire SW et al (2002) Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. J Pain 3(5):401–411

    Article  PubMed  Google Scholar 

  45. Moulton EA et al (2006) Sex differences in the cerebral BOLD signal response to painful heat stimuli. Am J Physiol Regul Integr Comp Physiol 291(2):R257–R267

    Article  PubMed  CAS  Google Scholar 

  46. Paulson PE et al (1998) Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1–2):223–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Butler T et al (2005) Fear-related activity in subgenual anterior cingulate differs between men and women. Neuroreport 16(11):1233–1236

    Article  PubMed  Google Scholar 

  48. Straube T et al (2009) Sex differences in brain activation to anticipated and experienced pain in the medial prefrontal cortex. Hum Brain Mapp 30(2):689–698

    Article  PubMed  Google Scholar 

  49. Freund W et al (2010) Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study. Clin J Pain 26(4):339–347

    Article  PubMed  Google Scholar 

  50. Maihofner C et al (2007) The motor system shows adaptive changes in complex regional pain syndrome. Brain 130(Pt 10):2671–2687

    Article  PubMed  Google Scholar 

  51. Maihofner C et al (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61(12):1707–1715

    Article  PubMed  Google Scholar 

  52. Maihofner C, Handwerker HO, Birklein F (2006) Functional imaging of allodynia in complex regional pain syndrome. Neurology 66(5):711–717

    Article  PubMed  Google Scholar 

  53. Seifert F, Maihofner C (2007) Representation of cold allodynia in the human brain—a functional MRI study. NeuroImage 35(3):1168–1180

    Article  PubMed  Google Scholar 

  54. Vartiainen N et al (2009) Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. J Pain 10(8):854–859

    Article  PubMed  Google Scholar 

  55. Cauda F et al (2009) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci 10(1):1–14

    Article  Google Scholar 

  56. Cauda F et al. (2009) Altered resting state in diabetic neuropathic pain. PLoS ONE. 4

  57. Cauda F et al (2010) Altered resting state attentional networks in diabetic neuropathic pain. J Neurol Neurosurg Psychiatry 81(7):806–811

    Article  PubMed  CAS  Google Scholar 

  58. Kornelsen J et al (2013) Default mode network functional connectivity altered in failed back surgery syndrome. J Pain 14(5):483–491

    Article  PubMed  Google Scholar 

  59. Baliki MN, Geha PY, Apkarian AV (2007) Spontaneous pain and brain activity in neuropathic pain: functional MRI and pharmacologic functional MRI studies. Curr Pain Headache Rep 11(3):171–177

    Article  PubMed  Google Scholar 

  60. Becerra L et al (2006) Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 26(42):10646–10657

    Article  PubMed  CAS  Google Scholar 

  61. DaSilva AF et al (2008) Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS One 3(10):e3396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Abarca-Olivas J et al (2010) Volumetric measurement of the posterior fossa and its components using magnetic resonance imaging in idiopathic trigeminal neuralgia. Rev Neurol 51(9):520–524

    PubMed  Google Scholar 

  63. Ducreux D et al (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129(Pt 4):963–976

    Article  PubMed  Google Scholar 

  64. Hatem SM et al (2010) Clinical, functional and structural determinants of central pain in syringomyelia. Brain 133(11):3409–3422

    Article  PubMed  Google Scholar 

  65. Gruener H et al (2016) Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain 157(7):1415–1424

    Article  PubMed  Google Scholar 

  66. Wrigley PJ et al (2009) Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain 141(1–2):52–59

    Article  PubMed  CAS  Google Scholar 

  67. Gustin SM et al (2010) Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex 20(6):1409–1419

    Article  PubMed  CAS  Google Scholar 

  68. Hsieh P-C et al (2015) Imaging signatures of altered brain responses in small-fiber neuropathy: reduced functional connectivity of the limbic system after peripheral nerve degeneration. Pain 156(5):904–916

    Article  PubMed  Google Scholar 

  69. Goswami R et al (2016) A longitudinal study of pain, personality, and brain plasticity following peripheral nerve injury. Pain 157(3):729–739

    Article  PubMed  Google Scholar 

  70. DeSouza DD, Hodaie M, Davis KD (2016) Structural magnetic resonance imaging can identify trigeminal system abnormalities in classical trigeminal neuralgia. Front Neuroanat 10:95

    Article  PubMed  PubMed Central  Google Scholar 

  71. Desouza DD et al (2013) Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS One 8(6):e66340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Davis KD, Moayedi M (2013) Central mechanisms of pain revealed through functional and structural MRI. J NeuroImmune Pharmacol 8(3):518–534

    Article  PubMed  Google Scholar 

  73. Kong J et al (2010) Exploring the brain in pain: activations, deactivations and their relation. Pain 148(2):257–267

    Article  PubMed  Google Scholar 

  74. Harris RE et al (2013) Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. The Journal of the American Society of Anesthesiologists 119(6):1453–1464

    CAS  Google Scholar 

  75. Maarrawi J et al (2013) Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 154(11):2563–2568

    Article  PubMed  CAS  Google Scholar 

  76. Moens M et al (2012) Spinal cord stimulation modulates cerebral function: an fMRI study. Neuroradiology 54(12):1399–1407

    Article  PubMed  CAS  Google Scholar 

  77. Lu Y, Klein GT, Wang MY (2013) Can pain be measured objectively? Neurosurgery 73(2):N24–N25

    Article  PubMed  Google Scholar 

  78. Bittar, R.G., et al., Deep brain stimulation for pain relief: a meta-analysis. Journal of Clinical Neuroscience, 2005. 12(5): p. 515–519 %@ 0967-5868.

  79. Katayama Y et al (1986) Response of regional cerebral blood flow and oxygen metabolism to thalamic stimulation in humans as revealed by positron emission tomography. J Cereb Blood Flow Metab 6(6):637–641

    Article  PubMed  CAS  Google Scholar 

  80. Duncan GH et al (1998) Stimulation of human thalamus for pain relief: possible modulatory circuits revealed by positron emission tomography. J Neurophysiol 80(6):3326–3330

    Article  PubMed  CAS  Google Scholar 

  81. Davis KD et al (2000) Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: a positron emission tomography study. J Neurosurg 92(1):64–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soha Alomar.

Ethics declarations

Funding

No source of funding was provided to write this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No ethical approval was required for this manuscript since no original patients data was used. This is a review article.

Informed consent

No informed consent was required for this manuscript since no original patients data was used. This is a review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alomar, S., Bakhaidar, M. Neuroimaging of neuropathic pain: review of current status and future directions. Neurosurg Rev 41, 771–777 (2018). https://doi.org/10.1007/s10143-016-0807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-016-0807-7

Keywords

Navigation