Advertisement

Neurosurgical Review

, Volume 41, Issue 3, pp 755–770 | Cite as

Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis

  • Gun Keorochana
  • Kitipong Setrkraising
  • Patarawan Woratanarat
  • Alisara Arirachakaran
  • Jatupon KongtharvonskulEmail author
Review

Abstract

The surgical procedures used for arthrodesis in the lumbar spine for degenerative lumbar diseases remain controversial. This systematic review aims to assess and compare clinical outcomes along with the complications and fusion of each technique (minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) or minimally invasive lateral lumbar interbody fusion (MIS LLIF)) for treatment of degenerative lumbar diseases. Relevant studies were identified from Medline and Scopus from inception to July 19, 2016 that reported Oswestry Disability Index (ODI), back and leg pain visual analog score (VAS), postoperative complications, and fusion of either technique. Fifty-eight studies were included for the analysis of MIS-TLIF; 40 studies were included for analysis of LLIF, and 1 randomized controlled trial (RCT) study was included for comparison of MIS-TLIF to LLIF. Overall, there were 9506 patients (5728 in the MIS-TLIF group and 3778 in the LLIF group). Indirect meta-analysis, MIS-TLIF provided better postoperative back and leg pain (VAS), disabilities (ODI), and risk of having complications when compared to LLIF technique, but the fusion rate was not significantly different between the two techniques. However, direct meta-analysis between RCT study and pooled indirect meta-analysis of MIS-TLIF have better pain, disabilities, and complication but no statistically significant difference when compared to LLIF. In LLIF, the pooled mean ODI and VAS back pain were 2.91 (95% CI 2.49, 3.33) and 23.24 (95% CI 18.96, 27.51) in MIS approach whereas 3.14 (95% CI 2.29, 4.04) and 28.29 (95% CI 21.92, 34.67) in traditional approach. In terms of complications and fusion rate, there was no difference in both groups. In lumbar interbody fusion, MIS-TLIF had better ODI, VAS pain, and complication rate when compared to LLIF with direct and indirect meta-analysis methods. However, in terms of fusion rates, there were no differences between the two techniques.

Keywords

Systematic review MIS-TLIF LLIF XLIF DDD 

Notes

Acknowledgements

All authors declare no funding source or sponsor involvement in the study design, collection, analysis, and interpretation of the data, in writing the manuscript, and in submission of the manuscript for publication.

Compliance with ethical standards

Funding

None.

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable as no new patients were involved in this research.

Informed consent

Not applicable as no new patients were involved in this research.

Supplementary material

10143_2016_806_MOESM1_ESM.docx (24 kb)
Supplementary Table 1 (DOCX 24 kb)
10143_2016_806_MOESM2_ESM.docx (22 kb)
Supplementary Table 2 (DOCX 22 kb)
10143_2016_806_MOESM3_ESM.docx (22 kb)
Supplementary Table 3 (DOCX 21 kb)
10143_2016_806_MOESM4_ESM.docx (20 kb)
Supplementary Table 4 (DOCX 20 kb)
10143_2016_806_MOESM5_ESM.doc (67 kb)
ESM 1 (DOC 67 kb)

References

  1. 1.
    Adogwa O, Carr K, Thompson P, Hoang K, Darlington T, Perez E et al (2014) A prospective, multi-institutional comparative effectiveness study of lumbar spine surgery in morbidly obese patients: does minimally invasive transforaminal lumbar interbody fusion result in superior outcomes? World Neurosurgery 83:860–866CrossRefPubMedGoogle Scholar
  2. 2.
    Adogwa O, Carr K, Thompson P, Hoang K, Darlington T, Perez E et al (2015) A prospective, multi-institutional comparative effectiveness study of lumbar spine surgery in morbidly obese patients: does minimally invasive transforaminal lumbar interbody fusion result in superior outcomes? Biomed Res Int 83:860–866Google Scholar
  3. 3.
    Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS et al (2015) Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci 22:740–746CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmadian A, Verma S, Mundis GM, Jr., Oskouian RJ, Jr., Smith DA, Uribe JS: Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4-5 spondylolisthesis: clinical outcomes. J Neurosurg Spine 19:314–320, 2013Google Scholar
  5. 5.
    Alimi M, Hofstetter CP, Cong GT, Tsiouris AJ, James AR, Paulo D et al (2014) Radiological and clinical outcomes following extreme lateral interbody fusion: clinical article. J Neurosurg Spine 20:623–635CrossRefPubMedGoogle Scholar
  6. 6.
    Cahill KS, Martinez JL, Wang MY, Vanni S, Levi AD (2012) Motor nerve injuries following the minimally invasive lateral transpsoas approach: clinical article. J Neurosurg Spine 17:227–231CrossRefPubMedGoogle Scholar
  7. 7.
    Caputo AM, Michael KW, Chapman TM, Jr., Massey GM, Howes CR, Isaacs RE, et al.: Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. ScientificWorldJournal 2012:680643, 2012Google Scholar
  8. 8.
    Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG (2014) Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res 472:1784–1791CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Castro C, Oliveira L, Amaral R, Marchi L, Pimenta L (2014) Is the lateral transpsoas approach feasible for the treatment of adult degenerative scoliosis? Clin Orthop Relat Res 472:1776–1783CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng JS, Park P, Le H, Reisner L, Chou D, Mummaneni PV: Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: is there a difference? Neurosurgical Focus 35, 2013Google Scholar
  11. 11.
    Choi UY, Park JY, Kim KH, Kuh SU, Chin DK, Kim KS et al (2013) Unilateral versus bilateral percutaneous pedicle screw fixation in minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus 35:E11CrossRefPubMedGoogle Scholar
  12. 12.
    Cloward RB: Spondylolisthesis: treatment by laminectomy and posterior interbody fusion. Clin Orthop Relat Res:74–82, 1981Google Scholar
  13. 13.
    Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion: clinical article. J Neurosurg Spine 15:11–18CrossRefPubMedGoogle Scholar
  14. 14.
    Dakwar E, Cardona RF, Smith DA, Uribe JS (2010) Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus 28:E8CrossRefPubMedGoogle Scholar
  15. 15.
    Deutsch H, Musacchio Jr MJ: Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Neurosurgical focus 20, 2006Google Scholar
  16. 16.
    Eckman WW, Hester L, McMillen M (2014) Same-day discharge after minimally invasive transforaminal lumbar interbody fusion: a series of 808 cases. Clin Orthop Relat Res 472:1806–1812CrossRefPubMedGoogle Scholar
  17. 17.
    Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg 54:201–206CrossRefPubMedGoogle Scholar
  18. 18.
    Fan G, Gu G, Zhu Y, Guan X, Hu A, Wu X et al (2016) Minimally invasive transforaminal lumbar interbody fusion for isthmic spondylolisthesis: in situ versus reduction. World Neurosurgery 90:580–587 E581CrossRefPubMedGoogle Scholar
  19. 19.
    Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C (2014) Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 23(Suppl 6):684–692CrossRefPubMedGoogle Scholar
  20. 20.
    Gjessing MH (1951) Osteoplastic anterior fusion of the lower lumbar spine in spondylolisthesis, localized spondylosis, and tuberculous spondylitis. Acta Orthop Scand 20:200–213CrossRefPubMedGoogle Scholar
  21. 21.
    Gu G, Zhang H, Fan G, He S, Cai X, Shen X et al (2014) Comparison of minimally invasive versus open transforaminal lumbar interbody fusion in two-level degenerative lumbar disease. Int Orthop 38:817–824CrossRefPubMedGoogle Scholar
  22. 22.
    Guan J, Bisson EF, Dailey AT, Hood RS, Schmidt MH (2016) Comparison of clinical outcomes in the National Neurosurgery Quality and Outcomes Database for open versus minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976) 41:E416–E421CrossRefGoogle Scholar
  23. 23.
    Han K, Gao Q, Gao H, Lu Y, Bian N, Meng Q et al (2016) Clinical outcomes and cost analysis for unilateral versus bilateral pedicle screw fixation in two levels during minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF): a comparative analysis. Int J Clin Exp Med 9:11566–11573Google Scholar
  24. 24.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefPubMedGoogle Scholar
  25. 25.
    Jacobs WC, Vreeling A, De Kleuver M (2006) Fusion for low-grade adult isthmic spondylolisthesis: a systematic review of the literature. Eur Spine J 15:391–402CrossRefPubMedGoogle Scholar
  26. 26.
    Joseph JR, Smith BW, La Marca F, Park P (2015) Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 39:E4CrossRefPubMedGoogle Scholar
  27. 27.
    Kang MS, Park JY, Kim KH, Kuh SU, Chin DK, Kim KS, et al.: Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation: Comparison between primary and revision surgery. BioMed Research International 2014], 2014Google Scholar
  28. 28.
    Kepler CK, Sharma AK, Huang RC (2011) Lateral transpsoas interbody fusion (LTIF) with plate fixation and unilateral pedicle screws: a preliminary report. Journal of Spinal Disorders and Techniques 24:363–367CrossRefPubMedGoogle Scholar
  29. 29.
    Khajavi K, Shen A, Hutchison A (2015) Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur Spine J 24(Suppl 3):314–321CrossRefPubMedGoogle Scholar
  30. 30.
    Kim JS, Jung B, Lee SH: Instrumented minimally invasive spinal-transforaminal lumbar interbody fusion (MIS-TLIF); minimum 5-years follow-up with clinical and radiologic outcomes. J Spinal Disord Tech, 2012Google Scholar
  31. 31.
    Kim JY, Park JY, Kim KH, Kuh SU, Chin DK, Kim KS et al (2015) Minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis: comparison between isthmic and degenerative spondylolisthesis. World Neurosurg 84:1284–1293CrossRefPubMedGoogle Scholar
  32. 32.
    Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G (2006) Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine (Phila Pa 1976) 31:2329–2336CrossRefGoogle Scholar
  33. 33.
    Knight RQ, Schwaegler P, Hanscom D, Roh J (2009) Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech 22:34–37CrossRefPubMedGoogle Scholar
  34. 34.
    Kunze B, Drasseck T, Kluba T (2011) Posterior and transforaminal lumbar interbody fusion (PLIF/TLIF) for the treatment of localised segment degeneration of lumbar spine. Z Orthop Unfall 149:312–316CrossRefPubMedGoogle Scholar
  35. 35.
    Lau D, Lee JG, Han SJ, DC L, Chou D (2011) Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). J Clin Neurosci 18:624–627CrossRefPubMedGoogle Scholar
  36. 36.
    Lau D, Ziewacz J, Park P (2013) Minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis in patients with significant obesity. J Clin Neurosci 20:80–83CrossRefPubMedGoogle Scholar
  37. 37.
    Lee JC, Jang HD, Shin BJ (2012) Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976) 37:1548–1557CrossRefGoogle Scholar
  38. 38.
    Lee KH, Yue WM, Yeo W, Soeharno H, Tan SB (2012) Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J 21:2265–2270CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee WC, Park JY, Kim KH, Kuh SU, Chin DK, Kim KS et al (2016) Minimally invasive transforaminal lumbar interbody fusion in multilevel: comparison with conventional transforaminal interbody fusion. World Neurosurgery 85:236–243CrossRefPubMedGoogle Scholar
  40. 40.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lo WL, Lin CM, Yeh YS, SU YK (2015) Comparing miniopen and minimally invasive transforaminal interbody fusion in single-level lumbar degeneration 2015:168384Google Scholar
  42. 42.
    Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976) 25:487–492CrossRefGoogle Scholar
  43. 43.
    Lykissas MG, Aichmair A, Hughes AP, Sama AA, Lebl DR, Taher F et al (2014) Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J 14:749–758CrossRefPubMedGoogle Scholar
  44. 44.
    Malham GM, Ellis NJ, Parker RM, Seex KA: Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. The Scientific World Journal 2012, 2012Google Scholar
  45. 45.
    Malham GM, Parker RM, Goss B, Blecher CM, Ballok ZE (2014) Indirect foraminal decompression is independent of metabolically active facet arthropathy in extreme lateral interbody fusion. Spine 39:E1303–E1310CrossRefPubMedGoogle Scholar
  46. 46.
    Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2013) Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 19:110–118CrossRefPubMedGoogle Scholar
  47. 47.
    McAfee PC, Shucosky E, Chotikul L, Salari B, Chen L, Jerrems D (2013) Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases. International Journal of Spine Surgery 7:e8–e19CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Min SH, Yoo JS (2013) The clinical and radiological outcomes of multilevel minimally invasive transforaminal lumbar interbody fusion. Eur Spine J 22:1164–1172CrossRefPubMedGoogle Scholar
  49. 49.
    Moller DJ, Slimack NP, Acosta FL, Koski TR, Fessler RG, Liu JC: Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurgical Focus 31, 2011Google Scholar
  50. 50.
    Moskowitz A (2002) Transforaminal lumbar interbody fusion. Orthop Clin North Am 33:359–366CrossRefPubMedGoogle Scholar
  51. 51.
    Nandyala SV, Fineberg SJ, Pelton M, Singh K (2014) Minimally invasive transforaminal lumbar interbody fusion: one surgeon’s learning curve. Spine J 14:1460–1465CrossRefPubMedGoogle Scholar
  52. 52.
    Nemani VM, Aichmair A, Taher F, Lebl DR, Hughes AP, Sama AA et al (2014) Rate of revision surgery after stand-alone lateral lumbar interbody fusion for lumbar spinal stenosis. Spine 39:E326–E331CrossRefPubMedGoogle Scholar
  53. 53.
    Ozgur BM, Agarwal V, Nail E, Pimenta L (2010) Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. Sas j 4:41–46CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ozgur BM, Baird LC: Lateral approach for anterior lumbar interbody fusion (XLIF and DLIF), in Minimally Invasive Spine Surgery: A Practical Guide to Anatomy and Techniques, 2009, 135–142Google Scholar
  55. 55.
    Park Y, Ha JW, Lee YT, HC O, Yoo JH, Kim HB (2011) Surgical outcomes of minimally invasive transforaminal lumbar interbody fusion for the treatment of spondylolisthesis and degenerative segmental instability. Asian Spine J 5:228–236CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Park Y, Ha JW, Lee YT, Sung NY (2014) Minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis and degenerative spondylosis: 5-year results. Clin Orthop Relat Res 472:1813–1823CrossRefPubMedGoogle Scholar
  57. 57.
    Park Y, Lee SB, Seok SO, Jo BW, Ha JW (2015) Perioperative surgical complications and learning curve associated with minimally invasive transforaminal lumbar interbody fusion: a single-institute experience. CiOS. Clinics in Orthopedic Surgery 7:91–96CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Parker SL, Mendenhall SK, Shau DN, Zuckerman SL, Godil SS, Cheng JS et al (2014) Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg 82:230–238CrossRefPubMedGoogle Scholar
  59. 59.
    Pereira P, Buzek D, Franke J, Senker W, Kosmala A, Hubbe U, et al.: Surgical data and early postoperative outcomes after minimally invasive lumbar interbody fusion: results of a prospective, multicenter, observational data-monitored study. PLoS ONE 10, 2015Google Scholar
  60. 60.
    Perez-Cruet MJ, Hussain NS, White GZ, Begun EM, Collins RA, Fahim DK et al (2014) Quality-of-life outcomes with minimally invasive transforaminal lumbar interbody fusion based on long-term analysis of 304 consecutive patients. Spine (Phila Pa 1976) 39:E191–E198CrossRefGoogle Scholar
  61. 61.
    Phan K, Rao PJ, Kam AC, Mobbs RJ (2015) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J 24:1017–1030CrossRefPubMedGoogle Scholar
  62. 62.
    Phan K, Thayaparan GK, Mobbs RJ: Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion—systematic review and meta-analysis. Br J Neurosurg:1–7, 2015Google Scholar
  63. 63.
    Rhee JW, Petteys RJ: Prospective evaluation of 1-year outcomes in single-level percutaneous lumbar transfacet screw fixation in the lateral decubitus position following lateral transpsoas interbody fusion. 24:2546–2554, 2015Google Scholar
  64. 64.
    Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36:26–32CrossRefGoogle Scholar
  65. 65.
    Rodgers WB, Gerber EJ, Rodgers JA (2012) Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with beta-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg 6:24–28CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rodgers WB, Lehmen JA, Gerber EJ, Rodgers JA: Grade 2 spondylolisthesis at L4–5 treated by XLIF: safety and midterm results in the worst case scenario. The Scientific World Journal 2012, 2012Google Scholar
  67. 67.
    Rouben D, Casnellie M, Ferguson M (2011) Long-term durability of minimal invasive posterior transforaminal lumbar interbody fusion: a clinical and radiographic follow-up. J Spinal Disord Tech 24:288–296CrossRefPubMedGoogle Scholar
  68. 68.
    Salehi SA, Tawk R, Ganju A, LaMarca F, Liu JC, Ondra SL (2004) Transforaminal lumbar interbody fusion: surgical technique and results in 24 patients. Neurosurgery 54:368–374 discussion 374CrossRefPubMedGoogle Scholar
  69. 69.
    Schnee CL, Freese A, Ansell LV (1997) Outcome analysis for adults with spondylolisthesis treated with posterolateral fusion and transpedicular screw fixation. J Neurosurg 86:56–63CrossRefPubMedGoogle Scholar
  70. 70.
    Schwender JD, Holly LT, Rouben DP, Foley KT: Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18 Suppl:S1–6, 2005Google Scholar
  71. 71.
    Sclafani JA, Kim CW (2014) Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res 472:1711–1717CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sembrano JN, Tohmeh A, Isaacs R (2016) Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part I: clinical findings. Spine (Phila Pa 1976) 41(Suppl 8):S123–S132Google Scholar
  73. 73.
    Seng C, Siddiqui MA, Wong KPL, Zhang K, Yeo W, Tan SB et al (2013) Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine 38:2049–2055CrossRefPubMedGoogle Scholar
  74. 74.
    Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA (2011) Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech 24:242–250CrossRefPubMedGoogle Scholar
  75. 75.
    Shen X, Zhang H, Gu X, Gu G, Zhou X, He S (2014) Unilateral versus bilateral pedicle screw instrumentation for single-level minimally invasive transforaminal lumbar interbody fusion. J Clin Neurosci 21:1612–1616CrossRefPubMedGoogle Scholar
  76. 76.
    Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976) 35:1615–1620CrossRefGoogle Scholar
  77. 77.
    Simmonds MC, Higgins JP (2007) Covariate heterogeneity in meta-analysis: criteria for deciding between meta-regression and individual patient data. Stat Med 26:2982–2999CrossRefPubMedGoogle Scholar
  78. 78.
    Starkweather A (2006) Posterior lumbar interbody fusion: an old concept with new techniques. J Neurosci Nurs 38:13–20 30CrossRefPubMedGoogle Scholar
  79. 79.
    Taillard WF: Etiology of spondylolisthesis. Clin Orthop Relat Res:30–39, 1976Google Scholar
  80. 80.
    Tempel ZJ, Gandhoke GS, Bolinger BD, Okonkwo DO, Kanter AS (2015) Vertebral body fracture following stand-alone lateral lumbar interbody fusion (LLIF): report of two events out of 712 levels. Eur Spine J 24:409–413CrossRefPubMedGoogle Scholar
  81. 81.
    Tender GC, Serban D (2013) Genitofemoral nerve protection during the lateral retroperitoneal transpsoas approach. Neurosurgery 73:ons192–ons196CrossRefPubMedGoogle Scholar
  82. 82.
    Tender GC, Şerban D (2014) Minimally invasive transforaminal lumbar interbody fusion: comparison of two techniques. Chirurgia (Romania) 109:812–821Google Scholar
  83. 83.
    Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D et al (2005) Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 162:201–211CrossRefPubMedGoogle Scholar
  84. 84.
    Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21:1559–1573CrossRefPubMedGoogle Scholar
  85. 85.
    Tian W, Xu YF, Liu B, Liu YJ, He D, Yuan Q, et al.: Computer-assisted minimally invasive transforaminal lumbar interbody fusion may be better than open surgery for treating degenerative lumbar disease. J Spinal Disord Tech, 2014Google Scholar
  86. 86.
    Tsahtsarlis A, Wood M (2012) Minimally invasive transforaminal lumber interbody fusion and degenerative lumbar spine disease. Eur Spine J 21:2300–2305CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS et al (2015) Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J 24:378–385CrossRefPubMedGoogle Scholar
  88. 88.
    Villavicencio AT, Burneikiene S, Roeca CM, Nelson EL, Mason A (2010) Minimally invasive versus open transforaminal lumbar interbody fusion. Surg Neurol Int 1:12CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Waddell B, Briski D, Qadir R, Godoy G, Houston AH, Rudman E et al (2014) Lateral lumbar interbody fusion for the correction of spondylolisthesis and adult degenerative scoliosis in high-risk patients: early radiographic results and complications. Ochsner Journal 14:23–31PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang J, Zhou Y (2014) Perioperative complications related to minimally invasive transforaminal lumbar fusion: evaluation of 204 operations on lumbar instability at single center. Spine J 14:2078–2084CrossRefPubMedGoogle Scholar
  91. 91.
    Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J (2011) Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine. Eur Spine J 20:623–628CrossRefPubMedGoogle Scholar
  92. 92.
    Wang MY, Grossman J (2016) Endoscopic minimally invasive transforaminal interbody fusion without general anesthesia: initial clinical experience with 1-year follow-up. Neurosurg Focus 40:1–5CrossRefGoogle Scholar
  93. 93.
    Wang MY, Vasudevan R, Mindea SA (2014) Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. J Neurosurg Spine 21:861–866CrossRefPubMedGoogle Scholar
  94. 94.
    Weistroffer JK, Perra JH, Lonstein JE, Schwender JD, Garvey TA, Transfeldt EE et al (2008) Complications in long fusions to the sacrum for adult scoliosis: minimum five-year analysis of fifty patients. Spine (Phila Pa 1976) 33:1478–1483CrossRefGoogle Scholar
  95. 95.
    Wolfla CE, Maiman DJ, Coufal FJ, Wallace JR (2002) Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages. J Neurosurg 96:50–55CrossRefPubMedGoogle Scholar
  96. 96.
    Wolfla CE, Maiman DJ, Coufal FJ, Wallace JR (2002) Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages. J Neurosurg 96:50–55CrossRefPubMedGoogle Scholar
  97. 97.
    Wong AP, Smith ZA, Nixon AT, Lawton CD, Dahdaleh NS, Wong RH et al (2015) Intraoperative and perioperative complications in minimally invasive transforaminal lumbar interbody fusion: a review of 513 patients. J Neurosurg Spine 22:487–495CrossRefPubMedGoogle Scholar
  98. 98.
    Wong AP, Smith ZA, Stadler JA, XY H, Yan JZ, Li XF et al (2014) Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am 25:279–304CrossRefPubMedGoogle Scholar
  99. 99.
    Xia XL, Wang HL, Lyu FZ, Wang LX, Ma XS, Jiang JY (2015) Mast quadrant-assisted minimally invasive modified transforaminal lumbar interbody fusion: single incision versus double incision. Chin Med J 128:871–876CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Yang Y, Hong Y, Liu H, Song Y, Li T, Liu L et al (2015) Comparison of clinical and radiographic results between isobar posterior dynamic stabilization and posterior lumbar inter-body fusion for lumbar degenerative disease: a four-year retrospective study. Clin Neurol Neurosurg 136:100–106CrossRefPubMedGoogle Scholar
  101. 101.
    Ye YP, Xu H, Chen D (2013) Comparison between posterior lumbar interbody fusion and posterolateral fusion with transpedicular screw fixation for isthmic spondylolithesis: a meta-analysis. Arch Orthop Trauma Surg 133:1649–1655CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Yoo JS, Min SH, Yoon SH (2015) Fusion rate according to mixture ratio and volumes of bone graft in minimally invasive transforaminal lumbar interbody fusion: minimum 2-year follow-up. Eur J Orthop Surg Traumatol 25:183–189CrossRefGoogle Scholar
  103. 103.
    Yuan PS, Rowshan K, Verma RB, Miller LE, Block JE: Minimally invasive lateral lumbar interbody fusion with direct psoas visualization. Journal of Orthopaedic Surgery and Research 9, 2014Google Scholar
  104. 104.
    Zhang Q, Yuan Z, Zhou M, Liu H, Xu Y, Ren Y (2014) A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord 15:367CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Zhang W, Li X, Shang X, Xu X, Hu Y, He R, et al.: Modified minimally invasive transforaminal lumbar interbody fusion using a trans-multifidus approach: a safe and effective alternative to open-TLIF. Journal of Orthopaedic Surgery and Research 10, 2015Google Scholar
  106. 106.
    Zhou C, Tian YH, Zheng YP, Liu XY, Wang HH (2016) Mini-invasive transforaminal lumbar interbody fusion through Wiltse approach to treating lumbar spondylolytic spondylolisthesis. Orthop Surg 8:44–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gun Keorochana
    • 1
  • Kitipong Setrkraising
    • 2
  • Patarawan Woratanarat
    • 1
  • Alisara Arirachakaran
    • 2
  • Jatupon Kongtharvonskul
    • 3
    Email author
  1. 1.Orthopedics Department, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
  2. 2.Orthopedics DepartmentPolice General HospitalBangkokThailand
  3. 3.Section for Clinical Epidemiology and BiostatisticsFaculty of Medicine Ramathibodi HospitalBangkokThailand

Personalised recommendations