Skip to main content

Advertisement

Log in

Biological relevance of tissue factor and IL-6 in arteriovenous malformations

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Arteriovenous malformations (AVMs) are congenital abnormal vessels that shunt blood directly from the arterial to the venous system without a capillary bed. The underlying pathology of AVMs is not fully understood. The objective of the study was to determine the association between the expression patterns of tissue factor (TF) and interleukin-6 (IL-6) in AVMs with clinical and pathological findings. Eighteen cases of sporadic AVM with operative specimens were included in this study. The expression of messenger RNA (mRNA) of TF and IL-6 was assayed, and association with clinical factors was investigated. The distribution of TF and IL-6 was examined with immunofluorescence. The mRNA expression of TF was significantly higher in AVM specimens than in control tissues (P = 0.002) and significantly higher in the symptomatic group than in the asymptomatic group (P = 0.037). The mRNA expression of IL-6 was likewise significantly higher in AVM specimens than in control tissues (P = 0.038). Examination of immunostained sections indicated that TF+ cells were also positive for IL-6 and were distributed around normal endothelial cells and pericytes. Moreover, TF+/IL-6+ cells also expressed CD31, vascular endothelial growth factor receptor 2 (VEGFR2), and platelet-derived growth factor receptor beta (PDGFR-beta). These results suggest that TF is elevated in AVMs and that it mediates symptomatic events. IL-6 is associated with the angiogenic activity of TF, and both are present in the same abnormal endothelial cells and pericytes. These factors may have interactive effects and may serve in a prognostic role for AVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abecassis IJ, DS X, Batjer HH, Bendok BR (2014) Natural history of brain arteriovenous malformations: a systematic review. Neurosurg Focus 37:E7. doi:10.3171/2014.6.FOCUS14250

    Article  PubMed  Google Scholar 

  2. Aberg M, Siegbahn A (2013) Tissue factor non-coagulant signaling—molecular mechanisms and biological consequences with a focus on cell migration and apoptosis. J Thromb Haemost 11:817–825. doi:10.1111/jth.12156

    Article  CAS  PubMed  Google Scholar 

  3. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y (2015) Phosphatidylinositol 3-kinase class II alpha-isoform PI3K-C2alpha is required for transforming growth factor beta-induced Smad signaling in endothelial cells. J Biol Chem 290:6086–6105. doi:10.1074/jbc.M114.601484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Shahi Salman R, White PM, Counsell CE, du Plessis J, van Beijnum J, Josephson CB, Wilkinson T, Wedderburn CJ, Chandy Z, St George EJ, Sellar RJ, Warlow CP (2014) Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA 311:1661–1669. doi:10.1001/jama.2014.3200

    Article  PubMed  Google Scholar 

  5. Amin-Hanjani S (2014) ARUBA results are not applicable to all patients with arteriovenous malformation. Stroke 45:1539–1540. doi:10.1161/STROKEAHA.113.002696

    Article  PubMed  Google Scholar 

  6. Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G (1999) Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043

    CAS  PubMed  Google Scholar 

  7. Arderiu G, Pena E, Aledo R, Badimon L (2012) Tissue factor-Akt signaling triggers microvessel formation. J Thromb Haemost 10:1895–1905. doi:10.1111/j.1538-7836.2012.04848.x

    Article  CAS  PubMed  Google Scholar 

  8. Arderiu G, Pena E, Aledo R, Juan-Babot O, Badimon L (2011) Tissue factor regulates microvessel formation and stabilization by induction of chemokine (C-C motif) ligand 2 expression. Arterioscler Thromb Vasc Biol 31:2607–2615. doi:10.1161/ATVBAHA.111.233536

    Article  CAS  PubMed  Google Scholar 

  9. Bach RR (1988) Initiation of coagulation by tissue factor. CRC Crit Rev Biochem 23:339–368

    Article  CAS  PubMed  Google Scholar 

  10. Bugge TH, Xiao Q, Kombrinck KW, Flick MJ, Holmback K, Danton MJ, Colbert MC, Witte DP, Fujikawa K, Davie EW, Degen JL (1996) Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci U S A 93:6258–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Muller M, Risau W, Edgington T, Collen D (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75. doi:10.1038/383073a0

    Article  CAS  PubMed  Google Scholar 

  12. Cavalcanti DD, Kalani MY, Martirosyan NL, Eales J, Spetzler RF, Preul MC (2012) Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 116:122–132. doi:10.3171/2011.8.jns101241

    Article  CAS  PubMed  Google Scholar 

  13. Chand HS, Ness SA, Kisiel W (2006) Identification of a novel human tissue factor splice variant that is upregulated in tumor cells. Int J Cancer 118:1713–1720. doi:10.1002/ijc.21550

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Zhao Y, Chen Z, Tee M, Mao Y, LF Z (2009) Multiple dynamic cavernous malformations in a girl: long-term follow-up. Surg Neurol 72:728–732. doi:10.1016/j.surneu.2009.04.002

    Article  PubMed  Google Scholar 

  15. Chen Y, Pawlikowska L, Yao JS, Shen F, Zhai W, Achrol AS, Lawton MT, Kwok PY, Yang GY, Young WL (2006) Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol 59:72–80. doi:10.1002/ana.20697

    Article  CAS  PubMed  Google Scholar 

  16. Dorfleutner A, Hintermann E, Tarui T, Takada Y, Ruf W (2004) Cross-talk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell 15:4416–4425. doi:10.1091/mbc.E03-09-0640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flex A, Gaetani E, Pola R, Santoliquido A, Aloi F, Papaleo P, Dal Lago A, Pola E, Serricchio M, Tondi P, Pola P (2002) The −174 G/C polymorphism of the interleukin-6 gene promoter is associated with peripheral artery occlusive disease. Eur J Vasc Endovasc Surg 24:264–268

    Article  CAS  PubMed  Google Scholar 

  18. Gaudino M, Andreotti F, Zamparelli R, Di Castelnuovo A, Nasso G, Burzotta F, Iacoviello L, Donati MB, Schiavello R, Maseri A, Possati G (2003) The −174 G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 108(Suppl 1):II195–II199. doi:10.1161/01.cir.0000087441.48566.0d

    PubMed  Google Scholar 

  19. Giannarelli C, Alique M, Rodriguez DT, Yang DK, Jeong D, Calcagno C, Hutter R, Millon A, Kovacic JC, Weber T, Faries PL, Soff GA, Fayad ZA, Hajjar RJ, Fuster V, Badimon JJ (2014) Alternatively spliced tissue factor promotes plaque angiogenesis through the activation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor signaling. Circulation 130:1274–1286. doi:10.1161/CIRCULATIONAHA.114.006614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haas SL, Jesnowski R, Steiner M, Hummel F, Ringel J, Burstein C, Nizze H, Liebe S, Lohr JM (2006) Expression of tissue factor in pancreatic adenocarcinoma is associated with activation of coagulation. World J Gastroenterol 12:4843–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hobbs JE, Zakarija A, Cundiff DL, Doll JA, Hymen E, Cornwell M, Crawford SE, Liu N, Signaevsky M, Soff GA (2007) Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 120(Suppl 2):S13–S21

    Article  PubMed  Google Scholar 

  22. Josephson CB, Bhattacharya JJ, Counsell CE, Papanastassiou V, Ritchie V, Roberts R, Sellar R, Warlow CP, Al-Shahi Salman R (2012) Seizure risk with AVM treatment or conservative management: prospective, population-based study. Neurology 79:500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Josephson CB, Sauro K, Wiebe S, Clement F, Jette N (2016) Medical vs invasive therapy in AVM-related epilepsy: systematic review and meta-analysis. Neurology 86:64–71. doi:10.1212/WNL.0000000000002240

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kofler NM, Cuervo H, MK U, Murtomaki A, Kitajewski J (2015) Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep 5:16449. doi:10.1038/srep16449

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leblanc GG, Golanov E, Awad IA, Young WL (2009) Biology of vascular malformations of the brain. Stroke 40:e694–e702. doi:10.1161/STROKEAHA.109.563692

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee CZ, Young WL (2005) Management of brain arteriovenous malformations. Curr Opin Anaesthesiol 18:484–489. doi:10.1097/01.aco.0000182568.47927.f5

    Article  PubMed  Google Scholar 

  27. Li X, Wang R, Wang X, Xue X, Ran D, Wang S (2013) Relevance of IL-6 and MMP-9 to cerebral arteriovenous malformation and hemorrhage. Mol Med Rep 7:1261–1266. doi:10.3892/mmr.2013.1332

    CAS  PubMed  Google Scholar 

  28. Mackman N (2007) Alternatively spliced tissue factor—one cut too many? Thromb Haemost 97:5–8

    Article  CAS  PubMed  Google Scholar 

  29. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498:492–496. doi:10.1038/nature12207

    Article  CAS  PubMed  Google Scholar 

  30. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, Al-Shahi Salman R, Vicaut E, Young WL, Houdart E, Cordonnier C, Stefani MA, Hartmann A, von Kummer R, Biondi A, Berkefeld J, Klijn CJ, Harkness K, Libman R, Barreau X, Moskowitz AJ (2014) Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383:614–621. doi:10.1016/S0140-6736(13)62302-8

    Article  CAS  PubMed  Google Scholar 

  31. Mouchtouris N, Jabbour PM, Starke RM, Hasan DM, Zanaty M, Theofanis T, Ding D, Tjoumakaris SI, Dumont AS, Ghobrial GM, Kung D, Rosenwasser RH, Chalouhi N (2015) Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab 35:167–175. doi:10.1038/jcbfm.2014.179

    Article  CAS  PubMed  Google Scholar 

  32. Novakovic RL, Lazzaro MA, Castonguay AC, Zaidat OO (2013) The diagnosis and management of brain arteriovenous malformations. Neurol Clin 31:749–763. doi:10.1016/j.ncl.2013.03.003

    Article  PubMed  Google Scholar 

  33. Ott I, Weigand B, Michl R, Seitz I, Sabbari-Erfani N, Neumann FJ, Schomig A (2005) Tissue factor cytoplasmic domain stimulates migration by activation of the GTPase Rac1 and the mitogen-activated protein kinase p38. Circulation 111:349–355

    Article  CAS  PubMed  Google Scholar 

  34. Rangel-Castilla L, Russin JJ, Martinez-Del-Campo E, Soriano-Baron H, Spetzler RF, Nakaji P (2014) Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus 37:E1. doi:10.3171/2014.7.FOCUS14214

    Article  PubMed  Google Scholar 

  35. Ruf W, Dorfleutner A, Riewald M (2003) Specificity of coagulation factor signaling. J Thromb Haemost 1:1495–1503

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101:125–136. doi:10.1161/CIRCRESAHA.107.148932

    Article  CAS  PubMed  Google Scholar 

  37. Schulz GB, Wieland E, Wustehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A (2015) Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes. Stroke 46:1337–1343. doi:10.1161/STROKEAHA.114.007512

    Article  CAS  PubMed  Google Scholar 

  38. Sure U, Butz N, Schlegel J, Siegel AM, Wakat JP, Mennel HD, Bien S, Bertalanffy H (2001) Endothelial proliferation, neoangiogenesis, and potential de novo generation of cerebrovascular malformations. J Neurosurg 94:972–977. doi:10.3171/jns.2001.94.6.0972

    Article  CAS  PubMed  Google Scholar 

  39. Tian H, Mythreye K, Golzio C, Katsanis N, Blobe GC (2012) Endoglin mediates fibronectin/alpha5beta1 integrin and TGF-beta pathway crosstalk in endothelial cells. EMBO J 31:3885–3900. doi:10.1038/emboj.2012.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, GJ B Jr (1996) Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88:1583–1587

    CAS  PubMed  Google Scholar 

  41. van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W, Spek CA, Reitsma PH, Bogdanov VY, Versteeg HH (2009) Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A 106:19497–19502. doi:10.1073/pnas.0905325106

    Article  PubMed  PubMed Central  Google Scholar 

  42. Whitehead KJ, Smith MC, Li DY (2013) Arteriovenous malformations and other vascular malformation syndromes. Cold Spring Harb Perspect Med 3:a006635. doi:10.1101/cshperspect.a006635

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yasuda M, Okada E, Nagai Y, Tamura A, Ishikawa O (2010) Reactive proliferation of endothelial cells and pericytes associated with arteriovenous malformation. J Dermatol 37:363–366. doi:10.1111/j.1346-8138.2010.00788.x

    Article  PubMed  Google Scholar 

  44. Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N, Okamoto Y, Du W, Qi X, Asanuma K, Sugihara K, Aki S, Miyazawa H, Biswas K, Nagakura C, Ueno M, Iseki S, Schwartz RJ, Okamoto H, Sasaki T, Matsui O, Asano M, Adams RH, Takakura N, Takuwa Y (2012) Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18:1560–1569. doi:10.1038/nm.2928

    Article  CAS  PubMed  Google Scholar 

  45. Zhou F, Xue M, Qin D, Zhu X, Wang C, Zhu J, Hao T, Cheng L, Chen X, Bai Z, Feng N, Gao SJ, Lu C (2013) HIV-1 Tat promotes Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3beta signaling pathway. PLoS One 8:e53145. doi:10.1371/journal.pone.0053145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Mikami.

Ethics declarations

This work was supported in part by JSPS KAKENHI grant number 25462226 (to O.H.) as well as the RR&D Service of Department of Veterans Affairs (B7335R, B9260L), the NMSS [RG2135], and the CT Stem Cell Research Program (12-SCB-Yale-05).

The study protocol was approved by the ethics committee of Sapporo Medical University Hospital, and all subjects signed informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noshiro, S., Mikami, T., Kataoka-Sasaki, Y. et al. Biological relevance of tissue factor and IL-6 in arteriovenous malformations. Neurosurg Rev 40, 359–367 (2017). https://doi.org/10.1007/s10143-016-0780-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-016-0780-1

Keywords

Navigation