Skip to main content

Advertisement

Log in

The molecular aspects of chordoma

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Chordomas are one of the rarest bone tumors, and they originate from remnants of embryonic notochord along the spine, more frequently at the skull base and sacrum. Although they are relatively slow growing and low grade, chordomas are highly recurrent, aggressive, locally invasive, and prone to metastasize to the lungs, bone, and the liver. Chordomas highly and generally show a dual epithelial-mesenchymal differentiation. These tumors resist chemotherapy and radiotherapy; therefore, radical surgery and high-dose radiation are the most used treatments, although there is no standard way to treat the disease. The molecular biology process behind the initiation and progression of a chordoma needs to be revealed for a better understanding of the disease and to develop more effective therapies. Efforts to discover the mysteries of these molecular aspects have delineated several molecular and genetic alterations in this tumor. Here, we review and describe the emerging insights into the molecular landscape of chordomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhavan-Sigari R, Gaab MR, Rohde V, Abili M, Ostertag H (2014) Expression of PDGFR-α, EGFR and c-MET in spinal chordoma: a series of 52 patients. Anticancer research 34:623–630

    PubMed  Google Scholar 

  2. Almefty KK, Pravdenkova S, Sawyer JR, Al-Mefty O (2009) Impact of cytogenetic abnormalities on the management of skull base chordomas: clinical article. Journal of neurosurgery 110:715–724

    Article  PubMed  Google Scholar 

  3. Appleman LJ (2011) MET signaling pathway: a rational target for cancer therapy. Journal of Clinical Oncology 29:4837–4838

    Article  CAS  PubMed  Google Scholar 

  4. Auger M, Raney B, Callender D, Eifel P, Ordóñez NG (1994) Metastatic intracranial chordoma in a child with massive pulmonary tumor emboli. Fetal & Pediatric Pathology 14:763–770

    Article  CAS  Google Scholar 

  5. Aydemir E, Bayrak OF, Sahin F, Atalay B, Kose GT, Ozen M, Sevli S, Dalan AB, Yalvac ME, Dogruluk T (2012) Characterization of cancer stem-like cells in chordoma: laboratory investigation. Journal of neurosurgery 116:810–820

    Article  CAS  PubMed  Google Scholar 

  6. Bailey CS, Fisher CG, Boyd MC, Dvorak MF (2006) En bloc marginal excision of a multilevel cervical chordoma: case report. Journal of Neurosurgery: Spine 4:409–414

    PubMed  Google Scholar 

  7. Barresi V, Ieni A, Branca G, Tuccari G (2014) Brachyury: a diagnostic marker for the differential diagnosis of chordoma and hemangioblastoma versus neoplastic histological mimickers. Disease markers 2014:514753. doi:10.1155/2014/514753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bayrak OF, Aydemir E, Gulluoglu S, Sahin F, Sevli S, Yalvac ME, Acar H, Ozen M (2011) The effects of chemotherapeutic agents on differentiated chordoma cells: laboratory investigation. Journal of Neurosurgery: Spine 15:620–624

    PubMed  Google Scholar 

  9. Bayrak OF, Gulluoglu S, Aydemir E, Ture U, Acar H, Atalay B, Demir Z, Sevli S, Creighton CJ, Ittmann M (2013) MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. Journal of neuro-oncology 115:143–151

    Article  CAS  PubMed  Google Scholar 

  10. Bayrakli F, Guney I, Kilic T, Ozek M, Pamir MN (2007) New candidate chromosomal regions for chordoma development. Surgical neurology 68:425–430

    Article  PubMed  Google Scholar 

  11. Beddington R, Rashbass P, Wilson V (1992) Brachyury—a gene affecting mouse gastrulation and early organogenesis. Development 116:157–165

    Google Scholar 

  12. Bergh P, Kindblom LG, Gunterberg B, Remotti F, Ryd W, Meis‐Kindblom JM (2000) Prognostic factors in chordoma of the sacrum and mobile spine. Cancer 88:2122–2134

    Article  CAS  PubMed  Google Scholar 

  13. Bhadra A, Casey A (2006) Familial chordoma. A report of two cases. Journal of Bone & Joint Surgery, British Volume 88:634–636

    Article  CAS  Google Scholar 

  14. Birchmeier C, Birchmeier W, Gherardi E, Woude GFV (2003) Met, metastasis, motility and more. Nature reviews Molecular cell biology 4:915–925

    Article  CAS  PubMed  Google Scholar 

  15. Brandal P, Bjerkehagen B, Danielsen H, Heim S (2005) Chromosome 7 abnormalities are common in chordomas. Cancer genetics and cytogenetics 160:15–21

    Article  CAS  PubMed  Google Scholar 

  16. Camacho-Arroyo I, González-Agüero G, Gamboa-Domínguez A, Cerbón MA, Ondarza R (2000) Progesterone receptor isoforms expression pattern in human chordomas. Journal of neuro-oncology 49:1–7

    Article  CAS  PubMed  Google Scholar 

  17. Carrabba G, Dehdashti AR, Gentili F (2008) Surgery for clival lesions: open resection versus the expanded endoscopic endonasal approach. Neurosurgical focus 25, E7

    Article  PubMed  Google Scholar 

  18. Casali PG, Messina A, Stacchiotti S, Tamborini E, Crippa F, Gronchi A, Orlandi R, Ripamonti C, Spreafico C, Bertieri R (2004) Imatinib mesylate in chordoma. Cancer 101:2086–2097

    Article  CAS  PubMed  Google Scholar 

  19. Casali PG, Stacchiotti S, Sangalli C, Olmi P, Gronchi A (2007) Chordoma. Current opinion in oncology 19:367–370

    Article  PubMed  Google Scholar 

  20. Chen C, Yang HL, Chen KW, Wang GL, Lu J, Yuan Q, Gu YP, Luo ZP (2013) High expression of survivin in sacral chordoma. Medical oncology (Northwood, London, England) 30:529. doi:10.1007/s12032-013-0529-4

    Article  CAS  Google Scholar 

  21. Christoforou N, Miller RA, Hill CM, Jie CC, McCallion AS, Gearhart JD (2008) Mouse ES cell–derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. Journal of clinical investigation 118:894–903

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Deniz ML, Klç T, Almaata I, Kurtkaya Ö, Sav A, Pamir MN (2002) Expression of growth factors and structural proteins in chordomas: basic fibroblast growth factor, transforming growth factor α, and fibronectin are correlated with recurrence. Neurosurgery 51:753–760

    PubMed  Google Scholar 

  23. Diaz RJ, Guduk M, Romagnuolo R, Smith CA, Northcott P, Shih D, Berisha F, Flanagan A, Munoz DG, Cusimano MD (2012) High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis. Neoplasia 14:788–IN784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duan Z, Choy E, Nielsen GP, Rosenberg A, Iafrate J, Yang C, Schwab J, Mankin H, Xavier R, Hornicek FJ (2010) Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression. Journal of Orthopaedic Research 28:746–752

    CAS  PubMed  Google Scholar 

  25. Duan Z, Shen J, Yang X, Yang P, Osaka E, Choy E, Cote G, Harmon D, Zhang Y, Nielsen GP (2014) Prognostic significance of miRNA-1 (miR-1) expression in patients with chordoma. Journal of Orthopaedic Research 32:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eisenberg MB, Woloschak M, Sen C, Wolfe D (1997) Loss of heterozygosity in the retinoblastoma tumor suppressor gene in skull base chordomas and chondrosarcomas. Surgical neurology 47:156–160

    Article  CAS  PubMed  Google Scholar 

  27. El-Heliebi A, Kroneis T, Wagner K, Meditz K, Kolb D, Feichtinger J, Thallinger GG, Quehenberger F, Liegl-Atzwanger B, Rinner B (2014) Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells. PloS one 9, e87663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fasig J, Dupont W, LaFleur B, Olson S, Cates J (2008) Immunohistochemical analysis of receptor tyrosine kinase signal transduction activity in chordoma. Neuropathology and applied neurobiology 34:95–104

    CAS  PubMed  Google Scholar 

  29. Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130:4217–4227

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda S, Pelus LM (2006) Survivin, a cancer target with an emerging role in normal adult tissues. Molecular Cancer Therapeutics 5:1087–1098

    Article  CAS  PubMed  Google Scholar 

  31. Gay E, Sekhar LN, Rubinstein E, Wright DC, Sen C, Janecka IP, Snyderman CH (1995) Chordomas and chondrosarcomas of the cranial base: results and follow-up of 60 patients. Neurosurgery 36:887–897

    Article  CAS  PubMed  Google Scholar 

  32. Götz W, Kasper M, Miosge N, Hughes RC (1997) Detection and distribution of the carbohydrate binding protein galectin-3 in human notochord, intervertebral disc and chordoma. Differentiation 62:149–157

    Article  PubMed  Google Scholar 

  33. Grigioni WF, Fiorentino M, d'Errico A, Ponzetto A, Crepaldi T, Prat M, Comoglio PM (1995) Overexpression of c-met protooncogene product and raised Ki67 index in hepatocellular carcinomas with respect to benign liver conditions. Hepatology 21:1543–1546

    CAS  PubMed  Google Scholar 

  34. Guedes A, Barreto BG, Barreto LG, De Oliveira Araújo IB, Queiroz AC, Athanazio DA, Athanazio PR (2009) Metastatic parachordoma. Journal of cutaneous pathology 36:270–273

    Article  PubMed  Google Scholar 

  35. Hallor K, Staaf J, Jönsson G, Heidenblad M, von Steyern FV, Bauer H, Ijszenga M, Hogendoorn P, Mandahl N, Szuhai K (2007) Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation. British journal of cancer 98:434–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Henderson SR, Guiliano D, Presneau N, McLean S, Frow R, Vujovic S, Anderson J, Sebire N, Whelan J, Athanasou N (2005) A molecular map of mesenchymal tumors. Genome biology 6:R76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Henderson SR, Guiliano D, Presneau N, McLean S, Frow R, Vujovic S, Anderson J, Sebire N, Whelan J, Athanasou N, Flanagan AM, Boshoff C (2005) A molecular map of mesenchymal tumors. Genome biology 6:R76. doi:10.1186/gb-2005-6-9-r76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Herbst RS (2004) Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology* Biology* Physics 59:S21–S26

    Article  CAS  Google Scholar 

  39. Herrmann BG (1991) Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development 113:913–917

    CAS  PubMed  Google Scholar 

  40. Horbinski C, Oakley GJ, Cieply K, Mantha GS, Nikiforova MN, Dacic S, Seethala RR (2010) The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Archives of pathology & laboratory medicine 134:1170–1176

    Google Scholar 

  41. Horiguchi H, Sano T, Qian ZR, Hirokawa M, Kagawa N, Yamaguchi T, Hirose T, Nagahiro S (2004) Expression of cell adhesion molecules in chordomas: an immunohistochemical study of 16 cases. Acta neuropathologica 107:91–96

    Article  CAS  PubMed  Google Scholar 

  42. Hsu W, Mohyeldin A, Shah SR, ap Rhys CM, Johnson LF, Sedora-Roman NI, Kosztowski TA, Awad OA, McCarthy EF, Loeb DM (2011) Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target: laboratory investigation. Journal of neurosurgery 115:760–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu W, Mohyeldin A, Shah SR, Gokaslan ZL, Quinones-Hinojosa A (2012) Role of cancer stem cells in spine tumors: review of current literature. Neurosurgery 71:117–125

    Article  PubMed  Google Scholar 

  44. Kavka AI, Green J (1997) Tales of tails Brachyury and the T-box genes. Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer 1333:F73–F84

    CAS  Google Scholar 

  45. Kelley MJ, Korczak JF, Sheridan E, Yang X, Goldstein AM, Parry DM (2001) Familial chordoma, a tumor of notochordal remnants, is linked to chromosome 7q33. The American Journal of Human Genetics 69:454–460

    Article  CAS  PubMed  Google Scholar 

  46. Kilgore S, Prayson RA (2002) Apoptotic and proliferative markers in chordomas: a study of 26 tumors. Annals of diagnostic pathology 6:222–228

    Article  PubMed  Google Scholar 

  47. Klingler L, Shooks J, Fiedler PN, Marney A, Butler MG, Schwartz HS (2000) Microsatellite instability in sacral chordoma. Journal of surgical oncology 73:100–103

    Article  CAS  PubMed  Google Scholar 

  48. Korczak J, Kelley M, Allikian K, Shah A, Goldstein A (1997) Parry D Genomic screen for linkage in a family with autosomal dominant chordoma. In: Amerıcan journal of human genetıcs, vol 4. Unıv Chıcago Press, 5801 S Ellıs Avenue, Chıcago, Il 60637 USA, pp A400–A400

    Google Scholar 

  49. Kuźniacka A, Mertens F, Strömbeck B, Wiegant J, Mandahl N (2004) Combined binary ratio labeling fluorescence in situ hybridization analysis of chordoma. Cancer genetics and cytogenetics 151:178–181

    Article  PubMed  CAS  Google Scholar 

  50. Lagonigro M, Tamborini E, Negri T, Staurengo S, Dagrada G, Miselli F, Gabanti E, Greco A, Casali P, Carbone A (2006) PDGFRα, PDGFRβ and KIT expression/activation in conventional chondrosarcoma. The Journal of pathology 208:615–623

    Article  CAS  PubMed  Google Scholar 

  51. Le LP, Nielsen GP, Rosenberg AE, Thomas D, Batten JM, Deshpande V, Schwab J, Duan Z, Xavier RJ, Hornicek FJ (2011) Recurrent chromosomal copy number alterations in sporadic chordomas. PloS one 6, e18846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lohberger B, Rinner B, Stuendl N, Absenger M, Liegl-Atzwanger B, Walzer SM, Windhager R, Leithner A (2012) Aldehyde dehydrogenase 1, a potential marker for cancer stem cells in human sarcoma. PloS one 7, e43664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Long C, Jiang L, Wei F, Ma C, Zhou H, Yang S, Liu X, Liu Z (2013) Integrated miRNA-mRNA analysis revealing the potential roles of miRNAs in chordomas. PloS one 8, e66676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maira G, Pallini R, Anile C, Fernandez E, Salvinelli F, La Rocca LM, Rossi GF (1996) Surgical treatment of clival chordomas: the transsphenoidal approach revisited. Journal of neurosurgery 85:784–792

    Article  CAS  PubMed  Google Scholar 

  55. Matsuno A, Sasaki T, Nagashima T, Matsuura R, Tanaka H, Hirakawa M, Murakami M, Kirino T (1997) Immunohistochemical examination of proliferative potentials and the expression of cell cycle-related proteins of intracranial chordomas. Human pathology 28:714–719

    Article  CAS  PubMed  Google Scholar 

  56. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM (2001) Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes & Control 12:1–11

    Article  CAS  Google Scholar 

  57. McPherson CM, Suki D, McCutcheon IE, Gokaslan ZL, Rhines LD, Mendel E (2006) Metastatic disease from spinal chordoma: a 10-year experience. Journal of Neurosurgery: Spine 5:277–280

    PubMed  Google Scholar 

  58. Meis J, Giraldo A (1988) Chordoma. An immunohistochemical study of 20 cases. Archives of pathology & laboratory medicine 112:553–556

    CAS  Google Scholar 

  59. Miozzo M, Dalprà L, Riva P, Volontà M, Macciardi F, Pericotti S, Tibiletti MG, Cerati M, Rohde K, Larizza L (2000) A tumor suppressor locus in familial and sporadic chordoma maps to 1p36. International journal of cancer 87:68–72

    Article  CAS  PubMed  Google Scholar 

  60. Mori K, Chano T, Kushima R, Hukuda S, Okabe H (2002) Expression of E-cadherin in chordomas: diagnostic marker and possible role of tumor cell affinity. Virchows Archiv 440:123–127

    Article  CAS  PubMed  Google Scholar 

  61. Naka T, Boltze C, Kuester D, Schulz T-O, Samii A, Herold C, Ostertag H, Roessner A (2004) Expression of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, cathepsin B, and urokinase plasminogen activator in non–skull base chordoma. American journal of clinical pathology 122:926–930

    Article  CAS  PubMed  Google Scholar 

  62. Naka T, Iwamoto Y, Shinohara N, Ushijima M, Chuman H, Tsuneyoshi M (1997) Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 10:832–838

    CAS  Google Scholar 

  63. Naka T, Kuester D, Boltze C, Scheil‐Bertram S, Samii A, Herold C, Ostertag H, Krueger S, Roessner A (2008) Expression of hepatocyte growth factor and c-MET in skull base chordoma. Cancer 112:104–110

    Article  PubMed  Google Scholar 

  64. Naka T, Kuester D, Boltze C, Schulz TO, Samii A, Herold C, Ostertag H, Roessner A (2008) Expression of matrix metalloproteinases-1, −2, and −9; tissue inhibitors of matrix metalloproteinases-1 and −2; cathepsin B; urokinase plasminogen activator; and plasminogen activator inhibitor, type I in skull base chordoma. Hum Pathol 39:217–223. doi:10.1016/j.humpath.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  65. Naka T, Oda Y, Iwamoto Y, Shinohara N, Chuman H, Fukui M, Tsuneyoshi M (2001) Immunohistochemical analysis of E-cadherin, alpha-catenin, beta-catenin, gamma-catenin, and neural cell adhesion molecule (NCAM) in chordoma. Journal of clinical pathology 54:945–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Negri T, Casieri P, Miselli F, Orsenigo M, Piacenza C, Stacchiotti S, Bidoli P, Casali P, Pierotti M, Tamborini E (2007) Evidence for PDGFRA, PDGFRB and KIT deregulation in an NSCLC patient. British journal of cancer 96:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nelson AC, Pillay N, Henderson S, Presneau N, Tirabosco R, Halai D, Berisha F, Flicek P, Stemple DL, Stern CD (2012) An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. The Journal of pathology 228:274–285

    Article  CAS  PubMed  Google Scholar 

  68. O'Hara BJ, Paetau A, Miettinen M (1998) Keratin subsets and monoclonal antibody HBME-1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Human pathology 29:119–126

    Article  PubMed  Google Scholar 

  69. O'Hara BJ, Paetau A, Miettinen M (1998) Keratin subsets and monoclonal antibody HBME-1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Hum Pathol 29:119–126

    Article  PubMed  Google Scholar 

  70. Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE (2010) Endogenous Wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One 5, e11134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Palena C, Polev DE, Tsang KY, Fernando RI, Litzinger M, Krukovskaya LL, Baranova AV, Kozlov AP, Schlom J (2007) The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell–mediated cancer immunotherapy. Clinical Cancer Research 13:2471–2478

    Article  CAS  PubMed  Google Scholar 

  72. Pallini R, Maira G, Pierconti F, Falchetti ML, Alvino E, Cimino-Reale G, Fernandez E, D'Ambrosio E, Larocca LM (2003) Chordoma of the skull base: predictors of tumor recurrence. Journal of neurosurgery 98:812–822

    Article  PubMed  Google Scholar 

  73. Pamir MN, Özduman K (2008) Tumor-biology and current treatment of skull-base chordomas. In: Advances and technical standards in neurosurgery. Springer, pp 35–129

  74. Papagelopoulos PJ, Mavrogenis AF, Galanis EC, Savvidou OD, Boscainos PJ, Katonis PG, Sim FH (2004) Chordoma of the spine: clinicopathological features, diagnosis, and treatment. Orthopedics 27:1256–1263

    PubMed  Google Scholar 

  75. Park J-B, Lee C-K, Koh J-S, Lee J-K, Park E-Y, Riew KD (2007) Overexpressions of nerve growth factor and its tropomyosin-related kinase A receptor on chordoma cells. Spine 32:1969–1973

    Article  PubMed  Google Scholar 

  76. Park JC, Chae YK, Son CH, Kim MS, Lee J, Ostrow K, Sidransky D, Hoque MO, Moon C (2008) Epigenetic silencing of human T (brachyury homologue) gene in non-small-cell lung cancer. Biochemical and biophysical research communications 365:221–226

    Article  CAS  PubMed  Google Scholar 

  77. Perasole A, Infantolino D, Spigariol F (1991) Aspiration cytology and immunocytochemistry of sacral chordoma with liver metastases: a case report. Diagnostic cytopathology 7:277–281

    Article  CAS  PubMed  Google Scholar 

  78. Persons DL, Bridge JA, Neff JR (1991) Cytogenetic analysis of two sacral chordomas. Cancer genetics and cytogenetics 56:197–201

    Article  CAS  PubMed  Google Scholar 

  79. Pillay N, Plagnol V, Tarpey PS, Lobo SB, Presneau N, Szuhai K, Halai D, Berisha F, Cannon SR, Mead S (2012) A common single-nucleotide variant in T is strongly associated with chordoma. Nature genetics 44:1185–1187

    Article  CAS  PubMed  Google Scholar 

  80. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung LW (1995) c-Met proto-oncogene expression in benign and malignant human prostate tissues. The Journal of urology 154:293–298

    Article  CAS  PubMed  Google Scholar 

  81. Ptaszyński K, Szumera-Ciećkiewicz A, Owczarek J, Mrozkowiak A, Pekul M, Barańska J, Rutkowski P (2009) Epidermal growth factor receptor (EGFR) status in chordoma. Pol J Pathol 2:81–87

    Google Scholar 

  82. Radisky DC (2005) Epithelial-mesenchymal transition. Journal of cell science 118:4325–4326

    Article  CAS  PubMed  Google Scholar 

  83. Reich N, Oren M, Levine A (1983) Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Molecular and cellular biology 3:2143–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rinner B, Weinhaeusel A, Lohberger B, Froehlich EV, Pulverer W, Fischer C, Meditz K, Scheipl S, Trajanoski S, Guelly C (2013) Chordoma characterization of significant changes of the DNA methylation pattern. PloS one 8, e56609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Romeo S, Hogendoorn P (2006) Brachyury and chordoma: the chondroid–chordoid dilemma resolved? The Journal of pathology 209:143–146

    Article  CAS  PubMed  Google Scholar 

  86. Rong S, Jeffers M, Resau JH, Tsarfaty I, Oskarsson M, Woude GFV (1993) Met expression and sarcoma tumorigenicity. Cancer research 53:5355–5360

    CAS  PubMed  Google Scholar 

  87. Sakai K, Hongo K, Tanaka Y, Nakayama J (2007) Analysis of immunohistochemical expression of p53 and the proliferation marker Ki-67 antigen in skull base chordomas: relationships between their expression and prognosis. Brain tumor pathology 24:57–62

    Article  CAS  PubMed  Google Scholar 

  88. Salisbury J (2001) Embryology and pathology of the human notochord. In: Annales de pathologie, vol 6., pp 479–488

    Google Scholar 

  89. Salisbury JR, Isaacson PG (1985) Demonstration of cytokeratins and an epithelial membrane antigen in chordomas and human fetal notochord. The American journal of surgical pathology 9:791–797

    Article  CAS  PubMed  Google Scholar 

  90. Sandberg AA, Bridge JA (2002) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma Cancer genetics and cytogenetics 133:1–23

    Article  CAS  PubMed  Google Scholar 

  91. Sangoi AR, Dulai MS, Beck AH, Brat DJ, Vogel H (2009) Distinguishing chordoid meningiomas from their histologic mimics: an immunohistochemical evaluation. The American journal of surgical pathology 33:669–681

    Article  PubMed  Google Scholar 

  92. Scheil-Bertram S, Kappler R, von Baer A, Hartwig E, Sarkar M, Serra M, Brüderlein S, Westhoff B, Melzner I, Bassaly B (2014) Molecular profiling of chordoma. International journal of oncology 44:1041–1055

    PubMed  PubMed Central  Google Scholar 

  93. Scheil S, Brüderlein S, Liehr T, Starke H, Herms J, Schulte M, Möller P (2001) Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes, Chromosomes and Cancer 32:203–211

    Article  CAS  PubMed  Google Scholar 

  94. Schubert FR, Fainsod A, Gruenbaum Y, Gruss P (1995) Expression of the novel murine homeobox gene Sax-1 in the developing nervous system. Mechanisms of development 51:99–114

    Article  CAS  PubMed  Google Scholar 

  95. Schwab J, Antonescu C, Boland P, Healey J, Rosenberg A, Nielsen P, Iafrate J, Delaney T, Yoon S, Choy E, Harmon D, Raskin K, Yang C, Mankin H, Springfield D, Hornicek F, Duan Z (2009) Combination of PI3K/mTOR inhibition demonstrates efficacy in human chordoma. Anticancer Res 29:1867–1871

    CAS  PubMed  Google Scholar 

  96. Schwab JH, Boland PJ, Agaram NP, Socci ND, Guo T, O’Toole GC, Wang X, Ostroumov E, Hunter CJ, Block JA (2009) Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer immunology, immunotherapy 58:339–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shalaby A, Presneau N, Ye H, Halai D, Berisha F, Idowu B, Leithner A, Liegl B, Briggs TR, Bacsi K (2011) The role of epidermal growth factor receptor in chordoma pathogenesis: a potential therapeutic target. The Journal of pathology 223:336–346

    Article  CAS  PubMed  Google Scholar 

  98. Shimoda M, Sugiura T, Imajyo I, Ishii K, Chigita S, Seki K, Kobayashi Y, Shirasuna K (2012) The T-box transcription factor Brachyury regulates epithelial–mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells. BMC cancer 12:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stepanek J, Cataldo SA, Ebersold MJ, Lindor NM, Jenkins RB, Unni K, Weinshenker BG, Rubenstein RL (1998) Familial chordoma with probable autosomal dominant inheritance. American journal of medical genetics 75:335–336

    Article  CAS  PubMed  Google Scholar 

  100. Stott D, Kispert A, Herrmann B (1993) Rescue of the tail defect of Brachyury mice. Genes & development 7:197–203

    Article  CAS  Google Scholar 

  101. Sundaresan N, Rosen G, Boriani S (2009) Primary malignant tumors of the spine. Orthopedic Clinics of North America 40:21–36

    Article  PubMed  Google Scholar 

  102. Takei H, Powell SZ (2010) Novel immunohistochemical markers in the diagnosis of nonglial tumors of nervous system. Advances in anatomic pathology 17:150–153

    Article  CAS  PubMed  Google Scholar 

  103. Tamborini E, Miselli F, Negri T, Lagonigro MS, Staurengo S, Dagrada GP, Stacchiotti S, Pastore E, Gronchi A, Perrone F (2006) Molecular and biochemical analyses of platelet-derived growth factor receptor (PDGFR) B, PDGFRA, and KIT receptors in chordomas. Clinical Cancer Research 12:6920–6928

    Article  CAS  PubMed  Google Scholar 

  104. Triana A, Sen C, Wolfe D, Hazan R (2005) Cadherins and catenins in clival chordomas: correlation of expression with tumor aggressiveness. The American journal of surgical pathology 29:1422–1434

    Article  PubMed  Google Scholar 

  105. Virchow RLK (1857) Untersuchungen über die entwickelung des schädelgrundes im gesunden und krankhaften zustande: und über den einfluss derselben auf schädelform, gesichtsbildung und gehirnbau. G. Reimer

  106. Volpe R, Mazabraud A (1983) A clinicopathologic review of 25 cases of chordoma:(a pleomorphic and metastasizing neoplasm). The American journal of surgical pathology 7:161–170

    Article  CAS  PubMed  Google Scholar 

  107. Vujovic S, Henderson S, Presneau N, Odell E, Jacques T, Tirabosco R, Boshoff C, Flanagan A (2006) Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. The Journal of pathology 209:157–165

    Article  CAS  PubMed  Google Scholar 

  108. Weinberger PM, Yu Z, Kowalski D, Joe J, Manger P, Psyrri A, Sasaki CT (2005) Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. Archives of Otolaryngology–Head & Neck Surgery 131:707–711

    Article  Google Scholar 

  109. Yakkioui Y, Temel Y, Creytens D, Jahanshahi A, Fleischeuer R, Santegoeds R, Van Overbeeke JJ (2013) A Comparison of Cell-Cycle Markers in Skull Base and Sacral Chordomas. World neurosurgery

  110. Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, Goldstein AM, Parry DM, Kelley MJ (2009) T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nature genetics 41:1176–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang L, Guo S, Schwab JH, Nielsen GP, Choy E, Ye S, Zhang Z, Mankin H, Hornicek FJ, Duan Z (2013) Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma. PloS one 8, e75851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou H, Cb C, Lan J, Liu C, Xg L, Jiang L, Wei F, Ma Q, Dang G, Zj L (2010) Differential proteomic profiling of chordomas and analysis of prognostic factors. Journal of surgical oncology 102:720–727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Julie Yamamoto for her editorial assistance.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Faruk Bayrak.

Additional information

Comments

Reza Akhavan-Sigari, Göttingen, Germany

This is a review article dealing with genetic and molecular aspects of chordoma. Due to their location, it is difficult to obtain wide-margin resection. The rarity of chordoma and the lack of sufficient in vitro and in vivo models emphasize the difficulty in understanding it and developing effective therapies.

Systemic treatments of chordoma are largely ineffective and new therapeutic approaches are therefore needed. Given the complexity involved, the author has produced a number of positive and welcome outcomes including the literature review, which offers a useful overview of current research and policy, and the resulting bibliography, which provides a very useful resource for current practitioners.

The identification of common molecular patterns in chordomas is crucial to determine those genes most differentially expressed in chordoma and thus to establish which had the most promise for translation into clinically useful targets. To date, no targeted therapeutic strategies have been established for chordomas. Recently, however, a phase II study showed a modest antitumor activity of lapatinib in chordoma.

Amir R. Dehdashti, New York, USA

The authors have made a significant effort to elucidate the pathogenesis, molecular biology, genetics, and potential molecular target for consideration of future treatment in human chordomas. Although this is a review with no novel information, the summarized data is helpful to skull base neurosurgeons and all those who are involved with these difficult-to-treat lesions. Among all the different pathways and expression profiles involved in chordomas, it seems that brachyury and cytokeratin are more important to focus on as they are not involved in chondrosarcomas and they may contribute to the more aggressive feature of chordomas. Future directions should be probably more focused on those expression profiles. The most important question remains in the explanation for chemoresistance in chordomas. The presence of cancer stem cells in these tumors might be the answer. Working on the latter might help in identifying molecular targets for potential future chemotherapeutic agents. The authors should be commended for this thorough review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulluoglu, S., Turksoy, O., Kuskucu, A. et al. The molecular aspects of chordoma. Neurosurg Rev 39, 185–196 (2016). https://doi.org/10.1007/s10143-015-0663-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-015-0663-x

Keywords

Navigation