Skip to main content

Advertisement

Log in

Diffusion-weighted imaging-guided resection of intracerebral lesions involving the optic radiation

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

In this paper we report our experience with diffusion-weighted imaging (DWI) for optic radiation (OR) visualization during resection of tumors. We hypothesize that intraoperative OR visualization helps to maintain patients’ visual fields. DWI studies were performed together with T1-weighted postcontrast magnetic resonance imaging (MRI) in four patients with lesions in or adjacent to the OR (glioblastoma, oligo-astrocytoma, cavernoma, and metastasis; n=1 each). The OR was identified from one of six DWI data acquisitions, segmented and reconstructed three-dimensionally. The image data were neuronavigationally transferred into the operative field, and provided the neurosurgeon with information on lesion site and adjacent OR localization. Preoperative and postoperative neuroophthalmological testing included, among others, perimetry to define the value of diffusion-weighted image guidance during OR lesion resection. Three lesions were removed completely. In one case, low-grade tumor parts infiltrating the OR were intentionally left. No persistent visual field deficits were induced. In one patient, a transient homonymous hemianopia attributable to postoperative swelling completely resolved under steroid medication. The authors conclude that intraoperative OR visualization, realized by neuronavigationally displayed DWI data, might prove to be helpful to maintain patients’ visual fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–e
Fig. 3a–g
Fig. 4a–d
Fig. 5

Similar content being viewed by others

References

  1. Axer H, Berks G, Keyserlingk DG (2000) Visualization of nerve fiber orientation in gross histological sections of the human brain. Microsc Res Tech 51:481–492

    Google Scholar 

  2. Black P, Jaaskelainen J, Chabrerie A, Golby A, Gugino L (2002) Minimalist approach: functional mapping. Clin Neurosurg 49:90–102

    Google Scholar 

  3. Bürgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage 10:489–499

    Google Scholar 

  4. Coenen VA, Krings T, Mayfrank L, Polin RS, Reinges MHT, Thron A, Gilsbach JM (2001) 3D-visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49:86–93

    CAS  PubMed  Google Scholar 

  5. Coenen VA, Krings T, Axer H, Weidemann J, Kränzlein H, Hans FJ, Thron A, Gilsbach JM, Rohde V (2003) Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principle motor pathways. Surg Neurol 60:381–390

    Google Scholar 

  6. Duffau H, Velut S, Mitchell MC, Gatignol P, Capelle L (2004) Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir (Wien) 146:265–270

    Google Scholar 

  7. Ebeling U, Reulen HJ (1988) Neurosurgical topography of the optic radiation in the temporal lobe. Acta Neurochir 92:29–36

    Google Scholar 

  8. Jensen I, Seedorf HH (1976) Temporal lobe epilepsy and neuroopthalmology: ophthalmological findings in 74 temporal lobe resected patients. Acta Ophthalmol 54:827–841

    Google Scholar 

  9. Kitajima M, Korogi Y, Takahashi M, Eto K (1996) MR signal intensity of the optic radiation. Am J Neuroradiol 17:1379–1383

    Google Scholar 

  10. Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. In: Denkschriften der Schweizerischen Naturforschenden Gesellschaft. Gebrüder Fretz, Zürich

    Google Scholar 

  11. Lantz Tv, Wachsmuth W (1985–2004) Praktische Anatomie. Kopf—übergeordnete Systeme. Erster Band (1a). Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Lazar M, Alexander AL (2003) An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. NeuroImage 20:1140–1153

    Google Scholar 

  13. Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Rees TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rose BR, Pandya DN, Kennedy DN (1997) Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 42:951–962

    Google Scholar 

  14. Moller AR (1995) Intraoperative neurophysiologic monitoring. Harwood Academic, Luxembourg

    Google Scholar 

  15. Möller-Hartmann W, Krings T, Coenen VA, Mayfrank L, Weidemann J, Kränzlein H, Thron A (2002) Preoperative assessment of motor cortex and pyramidal tracts in central cavernoma employing functional and diffusion-weighted magnetic resonance imaging. Surg Neurol 58:302–308

    Google Scholar 

  16. Nakada T, Nakayama N, Fujii Y, Kwee IL (1999) Clinical application of three-dimensional anisotropy contrast magnetic resonance axonography: a technical note. J Neurosurg 90:791–795

    Google Scholar 

  17. Nieuwenhuys R, Voogd J, van Huijzen C (1991) The human central nervous system—a synopsis and atlas. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Nimsky C, Gansland O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1080

    Google Scholar 

  19. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    CAS  PubMed  Google Scholar 

  20. Türe U, Yasargil G, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–427

    Google Scholar 

  21. Wandell BA, Wade AR (2003) Functional imaging of the visual pathways. Neurol Clin 21:414–43

    Google Scholar 

  22. Werring DJ, Parker GJM, Miller DH, Thompson AJ, Barker GJ (1999) A direct demonstration of both structure and function in the visual system: combining diffusion tensor imaging with functional magnetic resonance imaging. NeuroImage 9:352–361

    Google Scholar 

  23. Wieshmann UC, Symms MR, Clark CA, Lemieux L, Franconi F, Parker GJ, Barker Gj, Shorvon SD (1999) Wallerian degeneration in the optic radiation after temporal lobectomy demonstrated in vivo with diffusion tensor imaging. Epilepsia 40:1155–1158

    Google Scholar 

  24. Wieshmann UC, Symms MR, Parker GJM, Clark CA, Barker GJ, Shorvon JM (2000) Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumor. J Neurol Neurosurg Psychiatry 68:501–503

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Coenen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coenen, V.A., Huber, K.K., Krings, T. et al. Diffusion-weighted imaging-guided resection of intracerebral lesions involving the optic radiation. Neurosurg Rev 28, 188–195 (2005). https://doi.org/10.1007/s10143-005-0385-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-005-0385-6

Keywords

Navigation