Skip to main content
Log in

Comparative and phylogenetic analysis of the complete chloroplast genomes of ten Pittosporum species from East Asia

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Pittosporum (Pittosporaceae) is famous as the ornamental and medical values, which is distributed tropical and subtropical regions of Eastern Hemisphere. The few phylogenetic studies have included samples from the Pacific Island, but the phylogenetic relationships of Asian species has not been studied. Here, the complete chloroplast (cp) genomes of ten Pittosporum species from East Asia were first sequenced and compared with those of the published species of this genus. Our results indicated that cp genomes of these species had a typical and conserved quadripartite structure. 131 genes were identical in order and orientation and no changes of inverted repeat (IR) occurred. However, the comparative analysis of cp genomes suggested that sequence divergence mainly appeared in non-coding or intergenic regions, in which several divergence hotspots were identified. By contrast, protein-coding genes showed the lowest variance under strong purifying selection. Phylogenetic analysis based on the cp genome sequences showed that the tested Pittosporum species were clustered into two major clades, in which the Asian species formed Clade I and the remaining species from Australia and New Zealand formed Clade II with high support values, which was consistent with the results of ITS data with low support values. These results suggested that cp genome is a robust phylogenetic indicator for deep nodes in the phylogeny of Pittosporum. Meanwhile, these results will provide the valuable information to better understand the phylogeny and biogeography of Pittosporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in the Science Data Bank at https://doi.org/https://doi.org/10.57760/sciencedb.08615 [https://doi.org/10.57760/sciencedb.08615].

References

  • Ahmed I, Biggs PJ, Matthews PJ et al (2012) Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol 4:1316–1323

    Article  PubMed  PubMed Central  Google Scholar 

  • Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34:3030–3031

    Article  CAS  PubMed  Google Scholar 

  • Bowman CM, Bonnard G, Dyer TA (1983) Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor Appl Genet 65:247–262

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: Secondary symbiogenesis and multiple losses. Curr Biol 12:R62–R64

    Article  CAS  PubMed  Google Scholar 

  • Cayzer LW, Crisp MD, Telford IRH (2000) Revision of Pittosporum (Pittosporaceae) in Australia. Aust Syst Bot 13:845–902

    Article  Google Scholar 

  • Chandler GT, Plunkett GM, Pinney SM et al (2007) Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data. Aust Syst Bot 20:390–401

    Article  CAS  Google Scholar 

  • Cosner ME, Raubeson LA, Jansen RK (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Darling AC, Mau B, Blattner FR et al (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng JL, Huang R, Zhang QG et al (2022) Further sesquiterpenoids from Pittosporum qinlingense and their anti-inflammatory activity. Fitoterapia 162:105292

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D et al (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du YP, Bi Y, Yang FP et al (2017) Complete chloroplast genome sequences of Lilium: insights into evolutionary dynamics and phylogenetic analyses. Sci Rep 7:5751

    Article  PubMed  PubMed Central  Google Scholar 

  • El Dib RA, Eskander J, Mohamed MA et al (2015) Two new triterpenoid estersaponins and biological activities of Pittosporum tobira ‘Variegata’ (Thunb.) W. T Aiton Leaves Fitoterapia 106:272–279

    Article  PubMed  Google Scholar 

  • Frazer KA, Lior P, Alexander P et al (2018) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279

    Article  Google Scholar 

  • Gemmill CE, Allan GJ, Wagner WL et al (2002) Evolution of insular Pacific Pittosporum (Pittosporaceae): origin of the Hawaiian radiation. Mol Phylogenet Evol 22:31–42

    Article  CAS  PubMed  Google Scholar 

  • Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84:5818–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Kuma K, Toh H et al (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson S-H et al (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 228:1647–1649

    Article  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E et al (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Ling LZ, Feng LT, Luo YL et al (2020) Characterization of the complete chloroplast genome and phylogenetic analysis of Pittosporum tobira (Pittosporaceae). Mitochondrial DNA Part B 5:1397–1398

    Article  Google Scholar 

  • Madikizela B, McGaw LJ (2017) Pittosporum viridiflorum Sims (Pittosporaceae): A review on a useful medicinal plant native to South Africa and tropical Africa. J Ethnopharmacol 205:217–230

    Article  CAS  PubMed  Google Scholar 

  • Manase MJ, Mitaine-Offer AC, Miyamoto T et al (2013) New triterpenoid estersaponins from the root barks of Pittosporum verticillatum subsp. verticillatum and evaluation of cytotoxicities. Fitoterapia 91:231–235

    Article  CAS  PubMed  Google Scholar 

  • McDonald MJ, Wang WC, Huang HD et al (2011) Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol 9:e1000622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas A (2009) Understanding evolutionary relationships in the angiosperm order apiales based on analyses of organellar DNA sequences and nuclear gene duplications. the degree of Doctor, Virginia Commonwealth University, Richmond, Virginia

  • Palmer JD (1991) Plastid Chromosomes: Structure and Evolution. In: Molecular T (ed) Bogorad L, and Vasil IK. Academic Press, Biology of Plastids, pp 5–53

    Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan ADT, Chaliha M, Hong HT et al (2020) Nutritional value and antimicrobial activity of Pittosporum angustifolium (Gumby Gumby), an Australian indigenous plant. Foods 9:887–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prjibelski A, Antipov D, Meleshko D et al (2020) Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics 70:e102

    Article  CAS  PubMed  Google Scholar 

  • Qu XJ, Moore MJ, Li DZ et al (2019) PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15:1–12

    Article  Google Scholar 

  • Raubeson LA, and Robert K J (2005) Chloroplast genomes of plants. Plant Diversity and Evolution Genotypic and Phenotypic Variation in Higher Plants Edited by R J Henry Wallingford UK: CABI Publishing 42:45–68

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  CAS  PubMed  Google Scholar 

  • Rjeibi I, Ncib S, Ben Saad A et al (2017) Evaluation of nutritional values, phenolic profile, aroma compounds and biological properties of Pittosporum tobira seeds. Lipids Health Dis 16:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Röschenbleck J, Wicke S, Weinl S et al (2017) Genus-wide screening reveals four distinct types of structural plastid genome organization in Pelargonium (Geraniaceae). Genome Biol Evol 9:64–76

    PubMed  Google Scholar 

  • Sajjad A, Khan AL, Khan AR et al (2016) Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front Plant Sci 7:1–12

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stephan G, Pascal L, and Ralph B (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64

  • Sytsma KJ, Schaal BA (1985) Phylogenetics of the Lisianthius skinneri (gentianaceae) species complex in panama utilizing DNA restriction fragment analysis. Evolution 39:594–608

    Article  CAS  PubMed  Google Scholar 

  • Thodi RC, Ibrahim JM, Surendran VA et al (2022) Rutaretin1’-(6″-sinapoylglucoside): promising inhibitor of COVID 19 mpro catalytic dyad from the leaves of Pittosporum dasycaulon miq (Pittosporaceae). J Biomol Struct Dyn 40:12557–12573

    Article  CAS  PubMed  Google Scholar 

  • Yang JB, Li DZ, Li HT (2015) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour 14:1024–1031

    Article  CAS  Google Scholar 

  • Zhang S-D, Ling L-Z (2022) Molecular structure and phylogenetic analyses of the plastomes of eight Sorbus Sensu Stricto species. Biomolecules 12:1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences for providing the samples.

Funding

This research was funded by the National Natural Science Foundation of China, grant number 31860052, Science and Technology Program of Liupanshui, grant number 52020-2020-PT-20 and Program for Training Innovation and Entrepreneurship of University Graduates of Liupanshui Normal University, grant number 2021cxcy101.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. L conceived and designed the study. S.D. Z, Q.H. Z and L.Z. L performed the experiments, analyzed the data and wrote the manuscript. L.Z. L revised the manuscript.

Corresponding author

Correspondence to Li-Zhen Ling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 6.18 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SD., Ling, LZ. & Zhang, QH. Comparative and phylogenetic analysis of the complete chloroplast genomes of ten Pittosporum species from East Asia. Funct Integr Genomics 24, 64 (2024). https://doi.org/10.1007/s10142-024-01344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01344-9

Keywords

Navigation