Skip to main content
Log in

Knockout of lws1 in zebrafish (Danio rerio) reveals its role in regulating feeding and vision-guided behavior

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1−/− larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1−/− larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1−/− larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Banerjee S, Ranspach LE, Luo X, Cianciolo LT, Fogerty J, Perkins BD, Thummel R (2022) Vision and sensorimotor defects associated with loss of Vps11 function in a zebrafish model of genetic leukoencephalopathy. Sci Rep 12(1):3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco IH, Kampff AR, Engert F (2011) Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 5:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandt SB, Mason DM, Macneill DB, Coates T, Gannon JE (1987) Predation by alewives on larvae of yellow perch in Lake Ontario. Trans Am Fish Soc 116(4):641–645

    Article  Google Scholar 

  • Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(14):2526–2539

    Article  PubMed  Google Scholar 

  • Cai S, Chen Y, Shang Y, Cui J, Li Z, Li Y (2018) Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment. Cell Death Dis 9(3):273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Catchen J, Moran RL, Rivera-Colón AG, Wang YC, Fuller RC (2021) Sequence analysis and ontogenetic expression patterns of cone opsin genes in the bluefin killifish (Lucania goodei). J Hered 112(4):357–366

    Article  CAS  PubMed  Google Scholar 

  • Chinen A, Hamaoka T, Yamada Y, Kawamura S (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163(2):663–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole BL (2002) Protan colour vision deficiency and road accidents. Clin Exp Optom 85(4):246–253

    Article  PubMed  Google Scholar 

  • Dupré D, Tostivint H (2014) Evolution of the gastrin-cholecystokinin gene family revealed by synteny analysis. Gen Comp Endocrinol 195:164–173

    Article  PubMed  Google Scholar 

  • Escobar-Camacho D, Ramos E, Martins C, Carleton KL (2017) The opsin genes of amazonian cichlids. Mol Ecol 26(5):1343–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuiman LA, Rose KA, Cowan JH Jr et al (2006) Survival skills required for predator evasion by fish larvae and their relation to laboratory measures of performance. Anim Behav 71(6):1389–1399

    Article  Google Scholar 

  • Guo R, Li F, Lu M, Ge K, Gan L (2021) Shang, D. LIM Homeobox 9 knockdown by morpholino does not affect zebrafish retinal development. Biol Open 10:bio056382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada Y, Matsuo M, Kamei Y, Goto M, Fukamachi S (2019) Evolutionary history of the medaka long-wavelength sensitive genes and effects of artificial regression by gene loss on behavioral photosensitivity. Sci Rep 9(1):2726

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardie RC, Juusola M (2015) Phototransduction in drosophila. Curr Opin Neurobiol 34:37–45

    Article  CAS  PubMed  Google Scholar 

  • Head AB, Malison JA (2000) Effects of lighting spectrum and disturbance level on the growth and stress responses of yellow perch Perca flavescens. J World Aquacult Soc 31(1):73–80

    Article  Google Scholar 

  • Hofmann CM, Carleton KL (2009) Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. Integr Comp Biol 49(6):630–643

    Article  CAS  PubMed  Google Scholar 

  • Horth L (2007) Sensory genes and mate choice: evidence that duplications, mutations, and adaptive evolution alter variation in mating cue genes and their receptors. Genomics 90(2):159–175

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Hu Z, Dang Y, Liu C, Zhou L, Liu H (2019) Acute exposure to ustiloxin A affects growth and development of early life zebrafish, Danio rerio. Chemosphere 226:851–857

    Article  CAS  PubMed  Google Scholar 

  • Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S (2015) Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 52(Pt B):194–209

  • Jiang F, Liu J, Zeng X, Yu L, Liu C, Wang J (2018) Tris (2-butoxyethyl) phosphate affects motor behavior and axonal growth in zebrafish (Danio rerio) larvae. Aquat Toxicol 198:215–223

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SC, Weng W, Bally-Cuif L, Schneider H (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10(1):70–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Karakatsouli N, Papoutsoglou SE, Pizzonia G, Tsatsos G, Tsopelakos A, Chadio S, Kalogiannis D, Dalla C, Polissidis A, Papadopoulou-Daifoti Z (2007) Effects of light spectrum on growth and physiological status of gilthead seabream Sparus aurata and rainbow trout Oncorhynchus mykiss reared under recirculating system conditions. Aquac Eng 36(3):302–309

    Article  Google Scholar 

  • Kawamura S, Kasagi S, Kasai D, Tezuka A, Shoji A, Takahashi A, Imai H, Kawata M (2016) Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types. Vis Res 127:67–73

    Article  PubMed  Google Scholar 

  • Kim BH, Hur SP, Hur SW, Lee CH, Lee YD (2016) Relevance of light spectra to growth of the rearing tiger puffer takifugu rubripes. Dev Reprod 20(1):23–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohashi T, Nakata N, Oda Y (2012) Effective sensory modality activating an escape triggering neuron switches during early development in zebrafish. J Neurosci 32(17):5810–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuthold D, Klüver N, Altenburger R, Busch W (2019) Can environmentally relevant neuroactive chemicals specifically be detected with the locomotor response test in zebrafish embryos? Environ Sci Technol 53(1):482–493

    Article  CAS  PubMed  Google Scholar 

  • Lin JJ, Wang FY, Li WH, Wang TY (2017) The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Sci Rep 7(1):15568

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Yan S, Shen ZJ, Li Z, Zhang XF, Liu XM, Zhang QW, Liu XX (2018) The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): evidence for visual function of opsin in phototaxis. Insect Biochem Mol Biol 96:27–35

    Article  CAS  PubMed  Google Scholar 

  • Liu DW, Wang FY, Lin JJ, Thompson A, Lu Y, Vo D, Yan HY, Zakon H (2019) The cone opsin repertoire of osteoglossomorph fishes: gene loss in mormyrid electric fish and a long wavelength-sensitive cone opsin that survived 3R. Mol Biol Evol 36(3):447–457

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TDJm (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Liang XF, Tang SL et al (2023) Role of short-wave-sensitive 1 (sws1) in cone development and first feeding in larval zebrafish. Fish Physiol Biochem 49(5):801–813

    Article  CAS  PubMed  Google Scholar 

  • Lv L-Y, Liang X-F, He S (2019) Genome-wide identification and characterization of olfactory receptor genes in Chinese perch, Siniperca chuatsi. Genes 10(2):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macias-Muñoz A, Rangel Olguin AG, Briscoe AD (2019) Evolution of phototransduction genes in lepidoptera. Genome Biol Evol 11(8):2107–2124

    Article  PubMed  PubMed Central  Google Scholar 

  • MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Fukamachi S, Mitani H, Kawamura S (2006) Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 371(2):268–278

    Article  CAS  PubMed  Google Scholar 

  • Mekdara PJ, Schwalbe MAB, Coughlin LL, Tytell ED (2018) The effects of lateral line ablation and regeneration in schooling giant danios. J Exp Biol 221(Pt 8):jeb175166

    Article  PubMed  Google Scholar 

  • Musilova Z, Salzburger W, Cortesi F (2021) The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu Rev Cell Dev Biol 37:441–468

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Kawakami K (2013) Prey capture in zebrafish larvae serves as a model to study cognitive functions. Front Neural Circuits 7:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29(41):9746–9752

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388(6638):167–171

    Article  CAS  PubMed  Google Scholar 

  • Orger MB, de Polavieja GG (2017) Zebrafish behavior: opportunities and challenges. Annu Rev Neurosci 40:125–147

    Article  CAS  PubMed  Google Scholar 

  • Portugues R, Severi KE, Wyart C, Ahrens MB (2013) Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr Opin Neurobiol 23(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Privat M, Romano SA, Pietri T et al (2019) Sensorimotor transformations in the zebrafish auditory system. Curr Biol 29(23):4010–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra EL, Medalha CC, Mattioli R (1999) Natural preference of zebrafish (Danio rerio) for a dark environment. Braz J Med Biol Res 32(12):1551–1553

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Hirano M, Nishimura Y, Tanaka T (2012) A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening. PLoS ONE 7(12):e52549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele WB, Kristofco LA, Corrales J et al (2018) Comparative behavioral toxicology with two common larval fish models: exploring relationships among modes of action and locomotor responses. Sci Total Environ 640–641:1587–1600

    Article  PubMed  Google Scholar 

  • Steenbergen PJ, Richardson MK, Champagne DL (2011) Patterns of avoidance behaviors in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222(1):15–25

    Article  PubMed  Google Scholar 

  • Stieb SM, Cortesi F, Jardim de Queiroz L, Carleton KL, Seehausen O, Marshall NJ (2023) Long-wavelength-sensitive (lws) opsin gene expression, foraging and visual communication in coral reef fishes. Mol Ecol 32(7):1656–1672

    Article  PubMed  Google Scholar 

  • Terakita A (2005) The opsins. Genome Biol 6(3):213

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuz-Sasik MU, Boije H, Manuel R (2022) Characterization of locomotor phenotypes in zebrafish larvae requires testing under both light and dark conditions. PLoS ONE 17(4):e0266491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sánchez-Vázquez FJ (2011) Effects of light during early larval development of some aquacultured teleosts: a review. Aquaculture 315(1–2):86–94

    Article  Google Scholar 

  • Wang C, Zhong Z, Sun P, Zhong H, Li H, Chen F (2017) Evaluation of the hair cell regeneration in zebrafish larvae by measuring and quantifying the startle responses. Neural Plast 2017:8283075

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoyama S, Radlwimmer FB (2001) The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158(4):1697–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccardi G, Kelber A, Sison-Mangus MP, Briscoe AD (2006) Color discrimination in the red range with only one long-wavelength sensitive opsin. J Exp Biol 209(Pt 10):1944–1955

    Article  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

  • Zhang YT, Chen M, He S et al (2021) Microplastics decrease the toxicity of triphenyl phosphate (TPhP) in the marine medaka (Oryzias melastigma) larvae. Sci Total Environ 763:143040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No.

Funding

This work was financially supported the National Natural Science Foundation of China (31972809) and the Key Research & Development Program of Hubei Province (2022BBA0051).

Author information

Authors and Affiliations

Authors

Contributions

Di-Mei Xu supplement and analyzed experimental data, wrote the original draft. Fa-Rui Chai designed and performed the experiment, analyzed experimental data. Ke Lu participated in some of the experiments. Xu-Fang Liang designed and supervised the experiment and wrote and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xu-Fang Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, DM., Chai, FR., Liang, XF. et al. Knockout of lws1 in zebrafish (Danio rerio) reveals its role in regulating feeding and vision-guided behavior. Funct Integr Genomics 24, 62 (2024). https://doi.org/10.1007/s10142-024-01333-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01333-y

Keywords

Navigation