Skip to main content

Advertisement

Log in

Danggui Shaoyaosan attenuates doxorubicin induced Nephrotic Syndrome through regulating on PI3K/Akt Pathway

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The study aimed to explore the role and the underlying mechanism of Danggui Shaoyaosan (DSS) in nephrotic syndrome (NS). NS rat model was induced by doxorubicin injection twice. After DSS treatment, inflammation and oxidative stress index were detected via ELISA. Western blot was used for the protein detection. Go and KEGG analysis was applied to evaluate target gene and signaling of DSS. MCP-5 cell was applied for the cell rescue experiments and mechanism exploration. The 24 h urine protein levels of NS rats increased significantly, which was reduced by DSS treatment in a concentration-dependent manner. After DSS treatment, levels of BUN, SCr, TG and TC were also decreased, and serum ALB and TP levels were increased in rats. GO and KEGG pathway enrichment identified PI3K-Akt to be the candidate signaling of DSS in the treatment of NS, which was activated in NS rats. The recuse experiments in MCP-5 demonstrated that IGF-1, the agonist of PI3K/AKT, abolished the beneficial role of DSS in podocyte cell viability, apoptosis, inflammation and oxidative stress. In conclusion, DSS exerts a protective role against the development of NS. The mechanism is related to the improvement of podocyte injury and the inhibition of PI3K/Akt pathway-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

None.

Funding

Mechanism of nephrotic syndrome in children based on ORRN signaling pathway and intervention of Danggui Shaoyao Powder (General project of Natural Science Foundation of Heilongjiang Province), Contract Number: H2015106.

Author information

Authors and Affiliations

Authors

Contributions

MQ designed the study, performed the experiment, and was a major contributor in writing the manuscript. TZZ involved in interpretation of data, drafting the manuscript and revising it critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Man Qin.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in agreement with the ARRIVE guidelines. All animal experimental protocols were approved by the Animal Ethics Committee of Heilongjiang Academy of Traditional Chinese Medicine.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Zhang, T. Danggui Shaoyaosan attenuates doxorubicin induced Nephrotic Syndrome through regulating on PI3K/Akt Pathway. Funct Integr Genomics 23, 148 (2023). https://doi.org/10.1007/s10142-023-01071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01071-7

Keywords

Navigation