Skip to main content
Log in

Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp.

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Banana is an important food crop that is susceptible to a wide range of pests and diseases that can reduce yield and quality. The primary objective of banana breeding programs is to increase disease resistance, which requires the identification of resistance (R) genes. Despite the fact that resistant sources have been identified in bananas, the genes, particularly the nucleotide-binding site (NBS) family, which play an important role in protecting plants against pathogens, have received little attention. As a result, this study included a thorough examination of the NBS disease resistance gene family’s classification, phylogenetic analysis, genome organization, evolution, cis-elements, differential expression, regulation by microRNAs, and protein–protein interaction. A total of 116 and 43 putative NBS genes from M. acuminata and M. balbisiana, respectively, were identified and characterized, and were classified into seven sub-families. Structural analysis of NBS genes revealed the presence of signal peptides, their sub-cellular localization, molecular weight and pI. Eight commonly conserved motifs were found, and NBS genes were unevenly distributed across multiple chromosomes, with the majority of NBS genes being located in chr3 and chr1 of the A and B genomes, respectively. Tandem duplication occurrences have helped bananas’ NBS genes spread throughout evolution. Transcriptome analysis of NBS genes revealed significant differences in expression between resistant and susceptible cultivars of fusarium wilt, eumusae leaf spot, root lesion nematode, and drought, implying that they can be used as candidate resistant genes. Ninety miRNAs were discovered to have targets in 104 NBS genes from the A genome, providing important insights into NBS gene expression regulation. Overall, this study offers a valuable genomic resource and understanding of the function and evolution of NBS genes in relation to rapidly evolving pathogens, as well as providing breeders with selection targets for fast-tracking breeding of banana varieties with more durable resistance to pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request. All other data generated or analyzed during this study are included in this article supplementary information files.

Abbreviations

NBS:

Nucleotide-binding site

PTI:

Pathogen-triggered immunity

ETI:

Effector-triggered immunity

SAR:

Systemic acquired resistance

PAMPs:

Pathogen-associated molecular patterns

PRRs:

Pattern recognition receptors

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Ameline-Torregrosa C, Wang B, O’Bleness MS, Deshpande S, Zhu H, Roe BA, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:21–25

    Google Scholar 

  • Andersen EJ, Ali S, Reese RN, Yen Y, Neupane S, Nepal MP (2016) Diversity and evolution of disease resistance genes in barley (Hordeum vulgare L.). Evol Bio Inform 12:99–108

    CAS  Google Scholar 

  • Anuradha C, Chandrasekar A, Backiyarani S, Uma S (2022) MusaRgeneDB: An online comprehensive database for disease resistance genes in Musa spp 3. Biotech 12:1–12

    Google Scholar 

  • Anuradha C, Chandrasekar A, Backiyarani S, Thangavelu R, Giribabu P, Uma S (2022) Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp and its role in defense response during stresses. Gene 821:146334

    CAS  PubMed  Google Scholar 

  • Arisha MH, Ahmad MQ, Tang W, Liu Y, Yan H, Kou M, Wang X, Zhang Y, Li Q (2020) RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Sci Rep 10:12573

    PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayliffe MA, Lagudah ES (2004) Molecular genetics of disease resistance in cereals. Ann Bot 94(6):765–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Backiyarani S, Uma S, Arunkumar G, Saraswathi MS, Sundararaju P (2013) Cloning and characterization of NBS-LRR resistance gene analogues of Musa spp. and their expression profiling studies against Pratylenchus coffeae. Afr J Biotechnol 12:4256–4268

    CAS  Google Scholar 

  • Bai J, Pennill LA, Ning J et al (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchel AS, Brederode FT, Bol JF, Linthorst HJ (1999) Mutation of GT-1 binding sites in the PR-1A promoter influences the level of inducible gene expression in vivo. Plant Mol Biol 40:387–396

  • Cannon SB, Mitra A, Baumgarten A et al (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. https://doi.org/10.1186/1471-2229-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang W, Li H, Chen H, Qiao F, Zeng H (2020) NBS-LRR gene family in banana (Musa acuminata): genome-wide identification and responses to Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. Eur J Plant Pathol 157:549–563

    Google Scholar 

  • Chen Z, Zhao W, Zhu X et al (2018) Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. J Genet Genomics 45(12):663–672

    PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools - an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    CAS  PubMed  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J Cell Mol Biol 38(5):810–822

    CAS  Google Scholar 

  • Collier SM, Moffett P (2009) NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci 14(10):521–529

    CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    CAS  PubMed  Google Scholar 

  • Cortaga CQ, Latina RA, Habunal RR, Lantican DV (2022) Identification and characterization of genome-wide resistance gene analogs (RGAs) of durian (Durio zibethinus L.). J Genet Eng Biotechnol 20:29

    PubMed  PubMed Central  Google Scholar 

  • Cristina MS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    CAS  PubMed  Google Scholar 

  • Dale J, James A, Paul JY et al (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8(1):1496

    PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Davey MW, Van den Bergh I, Markham R, Swennen R, Keulemans J (2009) Genetic variability in Musa fruit provitaminA carotenoids, lutein and mineral micronutrient contents. Food Chem 115(3):806–813

    CAS  Google Scholar 

  • Davey M, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics 14:683

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    CAS  PubMed  Google Scholar 

  • Die JV, Román B, Qi X, Rowland LJ (2018) Genome-scale examination of NBS-encoding genes in blueberry. Sci Rep 8(1):3429

    PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13:163–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763

    CAS  PubMed  Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13(4):472–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emediato FL, Passos M, Teixeira CD, Pappas GJ, Miller RN (2013) Analysis of expression Of NBS-LRR resistance gene analogs in Musa acuminata during compatible and incompatible interactions with Mycosphaerella musicola. Acta Hort 986:255–258

    Google Scholar 

  • Eulgem T, Rushton P, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    CAS  PubMed  Google Scholar 

  • Faigón-Soverna A, Harmon FG, Storani L et al (2006) A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18:2919–2928

    PubMed  PubMed Central  Google Scholar 

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499

    CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    CAS  PubMed  Google Scholar 

  • Fu Y, Zhang Y, Mason AS, Lin B, Zhang D, Yu H, Fu D (2019) NBS-encoding genes in Brassica napus evolved rapidly after allopolyploidization and co-localize with known disease resistance loci. Front Plant Sci 10:26

    PubMed  PubMed Central  Google Scholar 

  • Goyal N, Bhatia G, Sharma S, Garewal N, Upadhyay A, Upadhyay SK, Singh K (2020) Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 112(1):312–322

    CAS  PubMed  Google Scholar 

  • Gu L, Si W, Zhao L, Yang S, Zhang X (2015) Dynamic evolution of NBS–LRR genes in bread wheat and its progenitors. Mol Genet Genom 290:727–738

    CAS  Google Scholar 

  • Guo Y, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habachi-Houimli Y, Khalfallah Y, Mezghani-Khemakhem M, Makni H, Makni M, Bouktila D (2018) Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley. 3Biotech 8:1–16

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Series 41:95–98

    CAS  Google Scholar 

  • Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2:516–527

    CAS  PubMed  Google Scholar 

  • Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z (2015) The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Front Plant Sci 6:742

    PubMed  PubMed Central  Google Scholar 

  • JiaY YY, Zhang Y, Yang S, Zhang X (2015) Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet 16:48

    Google Scholar 

  • Jo B, Choi SS (2015) Introns: the functional benefits of introns in genomes. Genomics Inform 13(4):112–118

    PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Kim K, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee S (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Chae S, Oh NI, Nguyen NH, Cheong J (2020) Recurrent drought conditions enhance the induction of drought stress memory genes in Glycine max L. Front Genet 11:576086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koroban NV, Kudryavtseva AV, Krasnov GS et al (2016) The role of microRNA in abiotic stress response in plants. Mol Biol 50:337–343

    CAS  Google Scholar 

  • Kourelis J, van der Hoorn RA (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan T, Yang Z, Yang X, Liu Y, Wang X, Zeng Q (2009) Extensive functional diversification of the populus glutathione s-transferase supergene family. The Plant Cell Online 21(12):3749–3766

    CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–8

    CAS  PubMed  Google Scholar 

  • Lescot M, Piffanelli P, Ciampi AY et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58

    PubMed  PubMed Central  Google Scholar 

  • Lescot M, Ciampi AY, Ruiz M et al (2005) Fresh insights into the Musa genome and its comparison with rice. 2005.

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense on-line version contains web-only data. The Plant Cell Online 16:319–331

    CAS  Google Scholar 

  • Li J, Ding J, Zhang WG, Zhang Y, Tang P, Chen J, Tian D, Yang S (2010a) Unique evolutionary pattern of numbers of gramineous NBS–LRR genes. Mol Genet Genom 283:427–438

    CAS  Google Scholar 

  • Li X, Cheng Y, Ma W et al (2010b) Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Syst Evol 289(1–2):101–110

    Google Scholar 

  • Li Y, Zhong Y, Huang K, Cheng Z (2016) Genomewide analysis of NBS-encoding genes in kiwi fruit (Actinidiachinensis). J Genet 95:997–1001

    PubMed  Google Scholar 

  • Lin X, Zhang Y, Kuang H, Chen J (2013) Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genom 14:335–335

    CAS  Google Scholar 

  • Liu H, Dai J, Feng D, Liu B, Wang H, Wang J (2010) Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol 52(3):315–23

    CAS  PubMed  Google Scholar 

  • Liu F, Li H, Wu J, Wang B, Tian N, Liu J, Sun X, Wu H, Huang Y, Lü P, Cheng C (2021a) Genome-wide identification and expression pattern analysis of lipoxygenase gene family in banana. Sci Rep 11:9948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li D, Yang N, Zhu X, Han K, Gu R, Bai J, Wang A, Zhang Y (2021b) Genome-wide identification and analysis of CC-NBS-LRR family in response to downy mildew and black rot in Chinese cabbage. Int J Mol Sci 22:4266. https://doi.org/10.3390/ijms22084266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long M, VanKuren NW, Chen S, Vibranovski MD (2013) New gene evolution: little did we know. Annu Rev Genet 47:307–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano R, Hamblin MT, Prochnik S, Jannink J (2015) Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics 16(2015):360

    PubMed  PubMed Central  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    CAS  PubMed  Google Scholar 

  • Mace ES, Tai S, Innes DJ et al (2014) The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biol 14:253

    PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    CAS  PubMed  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92

    CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW et al (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15:809–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. CurrOpin Plant Biol 8:129–134

    CAS  Google Scholar 

  • Miller RN, Bertioli DJ, Baurens FC, Santos CM, Alves PC, Martins NF, Togawa RC, Souza MT, Pappas GJ (2008) Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminate Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol 8:15

    PubMed  PubMed Central  Google Scholar 

  • Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 12:1305–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mun J, Yu H, Park S, Park B (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genom 282:617–631

    CAS  Google Scholar 

  • Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A (2016) Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Front Plant Sci 7:1609

    PubMed  PubMed Central  Google Scholar 

  • Nansamba M, Sibiya J, Tumuhimbise R, Karamura D, Kubiriba J, Karamura E (2020) Breeding banana (Musa spp) for drought tolerance a review. Plant Breed 139:685–696

    Google Scholar 

  • Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10:e1004464

    PubMed  PubMed Central  Google Scholar 

  • Pan Q, Wendel JF, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J MolEvol 50:203–213

    CAS  Google Scholar 

  • Park JH, Shin C (2015) The role of plant small RNAs in NB-LRR regulation. Brief Funct Genom 14:268–274

    CAS  Google Scholar 

  • Passos M, de Cruz VO, Emediato FL et al (2013) Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics 14:78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peraza-Echeverria S, Dale JL, Harding RM, Smith MK, Collet C (2008) Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f. sp. cubense race 4. Mol Breed 22(4):565–579

    CAS  Google Scholar 

  • Peraza-Echeverria S, Dale JL, Harding RM, Collet C (2009) Molecular cloning and in silico analysis of potential Fusarium resistance genes in banana. Mol Breed 23:431–443

    CAS  Google Scholar 

  • Porter BW, Paidi MD, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 281:609–626

    CAS  PubMed  Google Scholar 

  • Qian L, Zhou G, Sun X, Lei Z, Zhang Y, Xue J, Hang Y (2017) Distinct patterns of gene gain and loss diverse evolutionary modes of NBS-encoding genes in three solanaceae crop species. G3-Genes Genom Genet 7(5):1577–1585

    CAS  Google Scholar 

  • Ravi I, Uma S, Vaganan MM, Mustaffa MM (2013) Phenotyping bananas for drought resistance. Front Physiol 4:9

    PubMed  PubMed Central  Google Scholar 

  • Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19(1):76–84

    CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102(16):5773–5778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton P, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton P, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell Online 14:749–762

    CAS  Google Scholar 

  • Santaella M, Suárez E, López CE, González C, Mosquera GM, Restrepo S, Tohme J, Badillo A, Verdier V (2004) Identification of genes in cassava that are differentially expressed during infection with Xanthomonas axonopodis pv. manihotis. Mol Plant Pathol 5(6):549–58

    CAS  PubMed  Google Scholar 

  • Santamaria M, Thomson CJ, Read ND, Loake GJ (2001) The promoter of a basic PR1-like gene, AtPRB1, from Arabidopsis establishes an organ-specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Mol Biol 47:641–652

    CAS  PubMed  Google Scholar 

  • Saravanakumar AS, Uma S, Thangavelu R, Backiyrani S, Saraswathi MS, Sriram V (2016) Preliminary analysis on the transcripts involved in resistance responses to eumusae leaf spot disease of banana caused by Mycosphaerellaeumusae, a recent add-on of the sigatoka disease complex. Turk J Botany 40(5):461–471

    CAS  Google Scholar 

  • Schutter BD, Speijer PR, Dochez C, Tenkouano A, Waele DD (2001) Evaluating host plant reaction of Musa germplasm to Radopholussimilis by inoculation of single primary roots. Nematropica 31(2):295–300

    Google Scholar 

  • Shao Z, Zhang Y, Hang Y, Xue J, Zhou G, Wu P, Wu X, Wu X, Wang Q, Wang B, Chen J (2014) Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol 166(1):217–234

    PubMed  PubMed Central  Google Scholar 

  • Shao Z, Xue J, Wu P, Zhang Y, Wu Y, Hang Y, Wang B, Chen J (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–2109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Xue J, Wang Q, Wang B, Chen J (2019) Revisiting the origin of plant NBS-LRR genes. Trends Plant Sci 24(1):9–12

    CAS  PubMed  Google Scholar 

  • Shiu S, Karłowski WM, Pan R, Tzeng Y, Mayer KF, Li W (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutanto A, Sukma D, Hermanto C, Sudarsono SA (2014) Isolation and characterization of resistance gene analogue (RGA) from Fusarium resistant banana cultivars. Emir J Food Agric 26:508–518

    Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    CAS  PubMed  Google Scholar 

  • Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics 2012:418208

    PubMed  PubMed Central  Google Scholar 

  • Thangavelu R, Saraswathi MS, Uma S, Loganathan M, Backiyarani S, Durai P, Raj E, Marimuthu N, Kannan G, Swennen R (2021) Identification of sources resistant to a virulent Fusarium wilt strain (VCG 0124) infecting Cavendish bananas. Sci Rep 11:3183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timm ES, Pardo LH, Coello RP, Navarrete TC, Villegas ON, Ordoñez EG (2016) Identification of differentially-expressed genes in response to Mycosphaerella fijiensisin the resistant Musa accession ‘Calcutta-4’ using suppression subtractive hybridization. PLoS ONE 11(8):e0160083

    Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222(1):9–19

    CAS  PubMed  Google Scholar 

  • Vanhove AC, Vermaelen W, Panis B, Swennen R, Carpentier SC (2012) Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Front Plant Sci 3:176

    PubMed  PubMed Central  Google Scholar 

  • Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109

    CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao L, Zhang X, Zhang Q, Jia Y, Wang G, Li S, Tian D, Li W, Yang S (2019) Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proc Natl Acad Sci 116:18479–18487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang L, Li Y, FengZ, MuZ, Wang J, Wu X, Wang B, Lu Z, Li G, Wu X (2022) Checking transformation efficiency for different Lagenaria siceraria genotypes by using seed germination pouches as a growth carrier. Plant Cell Tiss Organ Cult 2022. https://doi.org/10.1007/s11240-022-02345-x

  • Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Boil Evol 30(12):2723–2724

    CAS  Google Scholar 

  • Xu G, Guo C, Shan H, Kong H (2012) Divergence of duplicate genes in exon–intron structure. Proc Natl Acad Sci 109:1187–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Zhao T, Liu Y, Liu Y, Zhang Y, Zhang G, Chen H, Zhou G, Zhang S, Shao Z (2020) Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes. Front Genet 10:1286

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang J (2016) Genome-wide analysis of NBS-LRR genes in sorghum genome revealed several events contributing to NBS-LRR gene evolution in grass species. EvolBioinform Online 12:9–21

    CAS  Google Scholar 

  • Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y, Chen J, Tian D (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193

    CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Yue J, Tian D, Chen J (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom 280(3):187–198

    CAS  Google Scholar 

  • Yang L, Mu X, Liu C, Cai J, Shi K, Zhu W, Yang Q (2015a) Over-expression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J Integr Plant Biol 57:1078–1088

    CAS  PubMed  Google Scholar 

  • Yang S, Wang L, Huang J, Zhang X, Yuan Y, Chen J, Hurst LD, Tian D (2015b) Parent–progeny sequencing indicates higher mutation rates in heterozygotes. Nature 523:463–467

    CAS  PubMed  Google Scholar 

  • Yang X, Zhang L, Yang Y, Schmid M, Wang Y (2021) miRNA mediated regulation and interaction between plants and pathogens. Int J Mol Sci 22:2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y et al (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95(4):1663–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of wrky DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell Online 13:1527–1540

    CAS  Google Scholar 

  • Yu J, Tehrim S, Zhang F et al (2014) Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics 15(1):3

    PubMed  PubMed Central  Google Scholar 

  • Yu X, Feng B, He P, Shan L (2017) From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol 55:109–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Zhong S, Yang H et al (2021) Identification and characterization of NBS resistance genes in Akebia trifoliata. Front Plant Sci 12:758559

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Xie Z, Zou X, Casaretto JA, Ho TD, Shen QJ (2004) A rice wrky gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wu Y, Lee M, Liu Y, Rong Y, Santos TS, Wu C, Xie F, Nelson R, Zhang H (2010) Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors. Nucleic Acids Res 38(19):6513–6525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Murat F, Pont C, Langin T, Salse J (2014) Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 15:187

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xia R, Kuang H, Meyers BC (2016) The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol 33:2692–2705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen M, Sun L, Wang Y, Yin J, Liu J, Sun X, Hang Y (2020) Genome-wide identification and evolutionary analysis of NBS-LRR genes from Dioscorea rotundata. Front Genet 11:484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Wang Y, Chen J, Araki H, Jing Z, Jiang K, Shen JZ, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genom 271(4):402–415

    CAS  Google Scholar 

  • Zhu Q, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8:e84390

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is financially supported by the Indian Council of Agricultural Research, New Delhi (Grant ID: IXX14668).

Author information

Authors and Affiliations

Authors

Contributions

Anuradha Chelliah: project administration, conceptualization, work design, data curation, methodology, visualization, analyzed the data, writing—original draft, review and editing, formatting; Chandrasekar Arumugam: methodology, in silico analysis; Backiyarani Suthanthiram: validation; Thangavelu Raman: validation; Uma Subbaraya: validation.‬‬

Corresponding author

Correspondence to Anuradha Chelliah.

Ethics declarations

Ethical approval

No ethical issues involved.

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelliah, A., Arumugam, C., Suthanthiram, B. et al. Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp.. Funct Integr Genomics 23, 7 (2023). https://doi.org/10.1007/s10142-022-00925-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-022-00925-w

Keywords

Navigation