Skip to main content
Log in

Combining targeted sequencing and ultra-low-pass whole-genome sequencing for accurate somatic copy number alteration detection

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

This study investigated the feasibility of combining targeted sequencing and ultra-low-pass whole-genome sequencing (ULP-WGS) for improved somatic copy number alteration (SCNA) detection, due to its role in tumorigenesis and prognosis. Cerebrospinal fluid and matched blood samples were obtained from 29 patients with brain metastasis derived from lung cancer. Samples were subjected to targeted sequencing (genomic coverage: 300 kb) and 2×ULP-WGS. The SCNA was detected by the CTLW_CNV, Control-FreeC, and CNVkit methods and their accuracy was analyzed. Eighteen tumor samples showed consistent SCNA results between the three methods, while a small fraction of samples resulted in different SCNA estimations. Further analysis indicated that consistency of SCNA highly correlated with the difference of baseline depth (normalized depth of regions without SCNA events) estimation between methods. Conflict Index showed that CTLW_CNV significantly improved the accuracy of SCNA detection through precise baseline depth estimation. CTLW_CNV combines targeted sequencing and ULP-WGS for improved SCNA detection. The improvement in detection accuracy is mainly due to a refined baseline depth estimation, guided by single-nucleotide polymorphism allele frequencies within the deeply sequenced region (targeted sequencing). This method is especially suitable for tumor samples with biased aneuploidy, a previously under-estimated genomic characteristic across different cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, Gydush G, Reed SC, Rotem D, Rhoades J (2017) Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 8:1–13

    Article  CAS  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence dataBabraham Bioinformatics. Babraham Institute, Cambridge

    Google Scholar 

  • Ben-David U, Arad G, Weissbein U, Mandefro B, Maimon A, Golan-Lev T, Narwani K, Clark AT, Andrews PW, Benvenisty N (2014) Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5:1–11

    Article  Google Scholar 

  • Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, Janoueix-Lerosey I, Delattre O, Barillot E (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28:423–425

    Article  CAS  Google Scholar 

  • Bolger A, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Brown D, Smeets D, Székely B, Larsimont D, Szász AM, Adnet P-Y, Rothé F, Rouas G, Nagy ZI, Faragó Z (2017) Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat Commun 8:1–13

    Article  CAS  Google Scholar 

  • Buccitelli C, Salgueiro L, Rowald K, Sotillo R, Mardin BR, Korbel JO (2017) Pan-cancer analysis distinguishes transcriptional changes of aneuploidy from proliferation. Genome Res 27:501–511

    Article  CAS  Google Scholar 

  • Camacho N, Van Loo P, Edwards S, Kay JD, Matthews L, Haase K, Clark J, Dennis N, Thomas S, Kremeyer B (2017) Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet 13:e1007001

    Article  Google Scholar 

  • Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, Goodhead I, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R, Hurles ME, Edwards PA, Bignell GR, Stratton MR, Futreal PA (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729

    Article  CAS  Google Scholar 

  • Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA (2012a) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30:413–421

    Article  CAS  Google Scholar 

  • Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G (2012b) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30:413–421

    Article  CAS  Google Scholar 

  • Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355:eaaf8399

    Article  Google Scholar 

  • Depristo MA, Banks E, Poplin R, Garimella KV, Maguire J, Hartl C, Philippakis AA, Angel GD, Rivas MA, Hanna M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  Google Scholar 

  • Dong Z, Xie W, Chen H, Xu J, Wang H, Li Y, Wang J, Chen F, Choy KW, Jiang H (2017) Copy-number variants detection by low-pass whole-genome sequencing. Curr Protoc Human Genet 94:8.17. 11–8.17. 16

    Google Scholar 

  • Lee S, Lee J, Sim SH, Lee Y, Moon KC, Lee C, Park W-Y, Kim NK, Lee S-H, Lee H (2017) Comprehensive somatic genome alterations of urachal carcinoma. J Med Genet 54:572–578

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth GT, Abecasis GR, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  • Li F, Sun L, Zhang S (2015) Acquirement of DNA copy number variations in non-small cell lung cancer metastasis to the brain. Oncol Rep 34:1701–1707

    Article  CAS  Google Scholar 

  • Luo H, Xu X, Yang J, Wang K, Wang C, Yang P, Cai H (2020) Genome-wide somatic copy number alteration analysis and database construction for cervical cancer. Molec Genet Genom 1-9

  • Maciejewski JP, Tiu RV, O’Keefe C (2009) Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol 146:479–488

    Article  CAS  Google Scholar 

  • Morikawa A, Hayashi T, Kobayashi M, Kato Y, Shirahige K, Itoh T, Urashima M, Okamoto A, Akiyama T (2018) Somatic copy number alterations have prognostic impact in patients with ovarian clear cell carcinoma. Oncol Rep 40:309–318

    CAS  PubMed  Google Scholar 

  • Muñoz-Hidalgo L, San-Miguel T, Megías J, Monleón D, Navarro L, Roldán P, Cerdá-Nicolás M, López-Ginés C (2020) Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma. Neoplasia 22:10–21

    Article  Google Scholar 

  • Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504

    Article  CAS  Google Scholar 

  • Olshen AB, Venkatraman E, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572

    Article  Google Scholar 

  • Pavelka N, Rancati G, Li R (2010) Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer. Curr Opin Cell Biol 22:809–815

    Article  CAS  Google Scholar 

  • Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, Duyvesteyn K, Haidari S, van Hoeck A, Onstenk W (2019) Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575:210–216

    Article  CAS  Google Scholar 

  • Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu H-Y, Spillinger A, Shah AT, Tanasa B, Straessler K (2019) Genome-informed targeted therapy for osteosarcoma. Cancer Discov 9:46–63

    CAS  PubMed  Google Scholar 

  • Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H (2007) Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  Google Scholar 

  • Sugai T, Takahashi Y, Eizuka M, Sugimoto R, Fujita Y, Habano W, Otsuka K, Sasaki A, Yamamoto E, Matsumoto T (2018) Molecular profiling and genome-wide analysis based on somatic copy number alterations in advanced colorectal cancers. Mol Carcinog 57:451–461

    Article  CAS  Google Scholar 

  • Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12:e1004873

    Article  Google Scholar 

  • Tang Y-C, Amon A (2013) Gene copy-number alterations: a cost-benefit analysis. Cell 152:394–405

    Article  CAS  Google Scholar 

  • Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, Schumacher SE, Wang C, Hu H, Liu J (2018) Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33:676–689. e673

    Article  CAS  Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja AT, Johnson LA (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  CAS  Google Scholar 

  • Xia S, Huang C-C, Le M, Dittmar R, Du M, Yuan T, Guo Y, Wang Y, Wang X, Tsai S (2015a) Genomic variations in plasma cell free DNA differentiate early stage lung cancers from normal controls. Lung Cancer 90:78–84

    Article  Google Scholar 

  • Xia S, Kohli M, Du M, Dittmar RL, Lee A, Nandy D, Yuan T, Guo Y, Wang Y, Tschannen MR (2015b) Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Oncotarget 6:16411–16421

    Article  Google Scholar 

  • Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C, Wala J, Mermel CH (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140

    Article  CAS  Google Scholar 

  • Zhang Z, Hao K (2015) SAAS-CNV: a joint segmentation approach on aggregated and allele specific signals for the identification of somatic copy number alterations with next-generation sequencing data. PLoS Comput Biol 11:e1004618

    Article  Google Scholar 

  • Zhang Z, Hao K (2018) Using SAAS-CNV to detect and characterize somatic copy number alterations in cancer genomes from next generation sequencing and SNP array Data. In: Bickhart DM (ed) Copy Number Variants. Springer, New York, pp 29–47

  • Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: TL, JF, WG, and CY; acquisition of data: HF, ZL, YW, ZW, and ZF; analysis and interpretation of data: JF, WG, and CY; statistical analysis: WG and CY; drafting the manuscript: JF; revision of manuscript for important intellectual content: TL, WG, and CY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting Lei.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the ethics committee of The Second Hospital of Dalian Medical University (Dalian, China). Informed consent was obtained from each patient.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Guo, W., Yan, C. et al. Combining targeted sequencing and ultra-low-pass whole-genome sequencing for accurate somatic copy number alteration detection. Funct Integr Genomics 21, 161–169 (2021). https://doi.org/10.1007/s10142-021-00767-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-021-00767-y

Keywords

Navigation