Skip to main content

Advertisement

Log in

Buffalo liver transcriptome analysis suggests immune tolerance as its key adaptive mechanism during early postpartum negative energy balance

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Females undergo negative energy balance (NEB) during the early postpartum period to meet the lactation demands. The liver, being the key metabolic organ, plays a major role in handling NEB. Dairy animals handling high lactation demands are better models to understand the liver adaptive mechanisms during this phase. Therefore, we analyzed the liver transcriptome of dairy buffaloes during early postpartum. Liver biopsies were performed on three lactating buffaloes on the 15th and the 30th days of early postpartum and three heifers (controls) at the diestrous stage. Paired-end Next Generation Sequencing (NGS) identified 509 significantly differentially expressed genes (SDE) in the liver among the three groups. The SDE with log2 fold change > 3 and the unique SDE revealed the promotion of immune suppression (e.g., TCR), apoptosis (e.g., CCDC103), PGF2α synthesis, fat accumulation (e.g., BGLAP) and liver regeneration (e.g., FGF10) pathways, and the downregulation of antigen presentation (e.g., BOLA-DQA) on the 15th day of lactation. Consistently upregulated genes on the 15th and 30th days of early postpartum indicated the promotion of immune tolerance (e.g., IFITM3), medium and long-chain fatty acids’ oxidation (e.g., ACSM3), and lipid accumulation (e.g., INSIG1). However, consistently downregulated genes during early postpartum showed immunosuppression, the downregulation of gluconeogenesis from amino acids (e.g., DDO), and the biosynthesis of taurine (e.g., CSAD) and unsaturated fatty acids (e.g., SCD). Functional annotation and network analyses also indicated the promotion of immune tolerance, fat accumulation and decreased gluconeogenesis from amino acids, and estrogen metabolism on the 15th day of lactation. Overall, the liver showed immune tolerance as an adaptive mechanism during early postpartum of buffaloes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NEB:

Negative energy balance

NGS:

Next generation sequencing

BOLA-DQA :

Major histocompatibility complex, class II, DQ alpha, type 1

CCDC103 :

Coiled-coil domain-containing 103

PGF2α :

Prostaglandin F2alpha

BGLAP :

Bone gamma-carboxyglutamate

FGF10 :

Fibroblast growth factor 10

IFITM3 :

Interferon-induced transmembrane protein member 3

INSIG1 :

Insulin-induced gene 1

ACSM3 :

Acyl-CoA synthetase medium-chain family member 3

DDO :

D-aspartate oxidase

CSAD :

Cysteine sulfinic acid decarboxylase

SCD :

Stearoyl-CoA desaturase

ANGPTL4 :

Angiopoietin like 4

NEFA:

Non-esterified free fatty acids

FFA:

Free fatty acids

MAMPS:

Microbial associated molecular patterns

KEGG:

Kyoto encyclopaedia of gene and genome

GO:

Gene ontology

NCBI:

National Center for Biotechnology Information

STRING:

Search Tool for the Retrieval of Interacting Genes

PPI:

Protein- Protein interaction

FPKM:

Fragments per kilo-base of exon per million fragments mapped

GIMAP4 :

GTPase IMAP family member 4

BOLA-DQA5 :

Major histocompatibility complex, class II, DQ alpha, type 5

BOLA-DQB :

Major histocompatibility complex, class II, DQ alpha beta

USH1C :

USH1 Protein network component harmonin

M-SAA3.2 :

Mammary serum amyloid A3.2

SAA3 :

Serum amyloid A3

SLC22A16:

Solute carrier family 16

GSTA1:

Glutathione S-transferase A1

ECEL1 :

Endothelin-converting enzyme-like 1

PPAR:

Peroxisome proliferator-activated receptors

DQA2 :

Major histocompatibility complex, class II, DQ alpha 2

APOA1 :

Apolipoprotein A1

APOA5 :

Apolipoprotein A5

UBC :

Ubiquitin C

SECTM1A :

Secreted and transmembrane protein 1A

SH2D1A :

SH2 domain-containing 1A

LOC789452 :

T cell receptor alpha chain V region 2b4-like

PTGES :

Prostaglandin E synthase

LOC617406 :

Serpin peptidase inhibitor, clade B (ovalbumin), member 6-like

ncRNA:

Noncoding RNA

LOC100296286 :

T cell receptor alpha chain V region RL-5-like

LOC100300282 :

T cell receptor beta chain V region CTL-L17-like

IFI27L2 :

Interferon, alpha-inducible protein 27-like 2

HRAS :

HRas proto-oncogene, GTPase

GEFR :

Guanine nucleotide exchange factor

P2Y :

Purinergic receptor 2Y

LOC100848101 :

Kinesin-like protein KIF13A

TRNAR-CCG :

Transfer RNA arginine (anticodon CCG)

LOC615055 :

Ef-hand calcium-binding domain-containing protein 4A

LOC788915 :

Caspase-14

LOC107131362 :

UDP-Glucuronosyltransferase 2B33-like

SERPINE2 :

Serpin family E member 2

TPGS1 :

Tubulin polyglutamylase complex subunit 1

ASIP :

Agouti signaling protein

LOC101902932 :

Uncharacterized LOC101902932

C8G :

Complement component 8, gamma protein

ASPG :

Asparaginase

SPON2 :

Spondin 2

LOC785540 :

Cytochrome P450 2C31

LOC107133155 :

Apolipoprotein C-III-like

C4A :

Complement component 4A

LOC100337213 :

Adhesion G protein-coupled receptor E2

MT2A :

Metallothionein 2A

MT1E :

Metallothionein 1E

APOL3 :

Apolipoprotein L, 3

ABCA9 :

ATP binding cassette subfamily A member 9

GDPD1 :

Glycerophosphodiester phosphodiesterase domain-containing 1

DEPDC5 :

DEP domain-containing 5

MINOS1 :

Mitochondrial inner membrane organizing system 1

S1PR1 :

Sphingosine-1-phosphate receptor 1

PIK3CD :

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta

IGFBP1 :

Insulin-like growth factor binding protein 1

LOC511161 :

Nicotinamide N-methyltransferase

NKIRAS2 :

NF-KB inhibitor interacting Ras like2

LURAP1L:

Leucine rich adaptor protein 1 like

SPTCL3:

Serine palmitoyltransferase long-chain base subunit 3

KLF10 :

Kruppel like factor 10

LOC536097 :

Tyrosine-protein phosphatase non-receptor type substrate 1

ACTA2 :

Actin, alpha 2, smooth muscle, aorta

MTHFD1L :

Methylenetetrahydrofolate dehydrogenase 1-like

OAS1 :

2′,5′-oligoadenylate synthetase 1

OAS2 :

2′,5′-oligoadenylate synthetase 2

References

  • Accorsi PA, Govoni N, Gaiani R, Pezzi C, Seren E, Tamanini C (2005) Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows. Reprod Domest Anim 40:217–223

    Article  CAS  PubMed  Google Scholar 

  • Andersen JB, Ridder C, Larsen T (2008) Priming the cow for mobilization in the periparturient period: effects of supplementing the dry cow with saturated fat or linseed. J Dairy Sci 91(3):1029–1043

    Article  CAS  PubMed  Google Scholar 

  • Arora RC, Pandey RS (1982) Changes in peripheral plasma concentrations of progesterone, estradiol-17β, and luteinizing hormone during pregnancy and around parturition in the buffalo (Bubalus bubalis). Gen Comp Endocrinol 48:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aryal TR (2007) Differentials of post-partum amenorrhea: a survival analysis.​ JNMA J Nepal Med Assoc 46:66–73

  • Bao Y, Du J, Zhang M, Lu J, Zhang X, Xiong Q, Xu Y, Jia W (2016) Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Diabetes Res Clin Pract 120:S139

    Article  Google Scholar 

  • Barta CL, Liu H, Chen L, Giffen KP, Li Y, Krammer KL, Beisel KW, He DZ (2018) RNA-seq transcriptomic analysis of adult zebra fish inner ear hair cells. Sci Data 5:180005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra SK, Pahwa GS, Pandey RS (1982) Hormonal milieu around parturition in buffaloes (Bubalus bubalis). Biol Reprod 27:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Behrens A, Sibilia M, David JP, Möhle-Steinlein U, Tronche F, Schütz G, Wagner EF (2002) Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO J 21:1782–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belot A, Cimaz R (2012) Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr Rheumatol 10(1):21

    Article  Google Scholar 

  • Bertoni G, Bartocci S, Piccioli Cappelli F, Amici A (1997) Blood metabolites and hormone changes in lactating buffaloes fed diets different for energy content and protein degradability. In: Proceedings of Fifth World Buffalo Congress, Caserta, Italia, pp 961–965

  • Bionaz M, Periasamy K, Rodriguez-Zas SL, Everts RE, Lewin HA, Hurley WL, Loor JJ (2012) Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. PLoS One 7(3):33268

    Article  CAS  Google Scholar 

  • Chalmeh A, Pourjafar M, Nazifi S, Momenifar F, Mohamadi M (2015) Insulin resistance in different physiological states of high producing Holstein dairy cows. Acta Sci Vet 43:1255

  • Cho J, Kim L, Li Z, Rose NR, Talor MV, Njoku DB (2013) Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6. PLoS One 8:e61186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crispe IN (2014) Immune tolerance in liver disease. Hepatol. 60:2109–2117

    Article  CAS  Google Scholar 

  • Della Torre S, Mitro N, Fontana R, Gomaraschi M, Favari E, Recordati C, Lolli F, Quagliarini F, Meda C, Ohlsson C, Crestani M (2016) An essential role for liver ERα in coupling hepatic metabolism to the reproductive cycle. Cell Rep 15(2):360–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drackley JK, Overton TR, Douglas GN (2001) Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J Dairy Sci 84:E100–E112

    Article  CAS  Google Scholar 

  • Fausther M, Gonzales E, Dranoff JA (2012) Role of purinergic P2X receptors in the control of liver homeostasis. Wiley Interdiscip Rev Membr Transp Signal 1:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes L, Hagen KB, Bijlsma JW, Andreassen O, Christensen P, Conaghan PG, Doherty M, Geenen R, Hammond A, Kjeken I, Lohmander LS (2013) EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. Ann Rheum Dis 72:1125–1135

    Article  PubMed  Google Scholar 

  • Gong B, Wong C, Su Z, Hong H, Thierry-Mieg J, Thierry-Mieg D, Shi L, Auerbach SS, Tong W, Xu J (2014) Transcriptomic profiling of rat liver samples in a comprehensive study design by RNA-seq. Sci Data 1:140021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holczbauer A, Factor VM, Andersen JB, Marquardt JU, Kleiner DE, Raggi C, Kitade M, Seo D, Akita H, Durkin ME, Thorgeirsson SS (2013) Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology. 145(1):221–231

    Article  CAS  PubMed  Google Scholar 

  • Howie PW, McNeill AS (1982) Breast-feeding and postpartum ovulation. IPPF Med Bull 16(2):1–3

    CAS  PubMed  Google Scholar 

  • Ivanova VP, Kovaleva ZV, Sorochinskaya EI, Anokhina VV, Krivchenko AI (2016) The role of defensin fragment in the regulation of fatty acid composition of membrane phospholipids in epithelial-like cells. Biochem Moscow Suppl Ser A 10:150

    Article  Google Scholar 

  • Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol 14(5):315–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koltes DA, Spurlock DM (2011) Coordination of lipid droplet-associated proteins during the transition period of Holstein dairy cows. J Dairy Sci 94:1839–1848

    Article  CAS  PubMed  Google Scholar 

  • Kumar PR, Singh SK, Kharche SD, Govindaraju CS, Behera BK, Shukla SN, Kumar H, Agarwal SK (2014) Anestrus in cattle and buffalo: Indian perspective. Adv Anim Vet Sci 2(3):124–138

    Article  Google Scholar 

  • Leroy JLMR, Opsomer G, Van Soom A, Goovaerts IGF, Bols PEJ (2008) Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part I the importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43:612–622

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhao D, Guo Z, Li T, Qili M, Xu B, Qian M, Liang H (2016) Overexpression of SerpinE2/protease nexin-1 contribute to pathological cardiac fibrosis via increasing collagen deposition. Sci Rep 6:37635

  • Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D (2004) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 41:31–37

    Article  CAS  PubMed  Google Scholar 

  • Longhi MS, Ma Y, Mitry RR, Bogdanos DP, Heneghan M, Cheeseman P, Mieli-Vergani G, Vergani D (2005) Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun 25:63–71

    Article  CAS  PubMed  Google Scholar 

  • Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HA (2007) Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics 32(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Hua J, Mohamood AR, Hamad AR, Ravi R et al (2007) A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology 46:1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Madan KE, Raju S (2014) Comparative histology of human, cow, goat and sheep liver. J Surg Acad 4(1):10–13

    Google Scholar 

  • Marone G, Varricchi G, Loffredo S, Granata F (2016) Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur J Pharmacol 778:146–151

    Article  CAS  PubMed  Google Scholar 

  • McCabe M, Waters S, Morris D, Kenny D, Lynn D, Creevey C (2012) RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance. BMC Genomics 13(1):193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy SD, Waters SM, Kenny DA, Diskin MG, Fitzpatrick R, Patton J, Wathes DC, Morris DG (2010) Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach. Physiol Genomics 42(3):188–199

    Article  CAS  Google Scholar 

  • Ng R, Wu H, Xiao H, Chen X, Willenbring H, Steer CJ, Song G (2014) Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatol 60(2):554–564

    Article  CAS  Google Scholar 

  • Orsi NM, Gopichandran N, Leese HJ, Picton HM, Harris SE (2005) Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction 129:219–228

    Article  CAS  PubMed  Google Scholar 

  • Osman C, Haag M, Wieland FT, Brügger B, Langer T (2010) A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 29(12):1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG (2011) Using graph theory to analyze biological networks. BioData Min 4(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Popovic PJ, Zeh HJ, Ochoa JB (2007) Arginine and immunity. J Nutr 137:1681S–1686S

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Perdomo G, Su D, D’Souza FM, Shachter NS, Dong HH (2007) Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice. J Lipid Res 48:1476–1487

    Article  CAS  PubMed  Google Scholar 

  • Rowland A, Miners JO, Mackenzie PI (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45(6):1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Sangsritavong S, Combs DK, Sartori R, Armentano LE, Wiltbank MC (2002) High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17β in dairy cattle. J Dairy Sci 85:2831–2842

    Article  CAS  PubMed  Google Scholar 

  • Sarentonglaga B, Ogata K, Taguchi Y, Kato Y, Nagao Y (2013) The developmental potential of oocytes is impaired in cattle with liver abnormalities. J Reprod Dev 59:168–173

    Article  CAS  PubMed  Google Scholar 

  • Seto NL, Bogan RL (2015) Decreased cholesterol uptake and increased liver X receptor-mediated cholesterol efflux pathways during prostaglandin F2 alpha-induced and spontaneous luteolysis in sheep. Biol Reprod:92–128

  • Sharma D, Golla N, Singh S, Singh PK, Singh D, Onteru SK (2019) An efficient method for extracting next-generation sequencing quality RNA from liver tissue of recalcitrant animal species. J Cell Physiol. https://doi.org/10.1002/jcp.28226

  • Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, Holcmann M (2007) The epidermal growth factor receptor: from development to tumorigenesis. Differentiation. 75:770–787

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2017), Buffalo liver transcriptome analysis at early postpartum. 2017. Masters Thesis. National Dairy Research Institute, India

  • Sollner JF, Leparc G et al (2017) Transcriptome profiling of rat liver samples in a comprehensive study design by RNA-seq. Sci Data 4:170185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiling H, Wüstefeld T, Bugnon P, Brauchle M, Fassler R, Teupser D, Thiery J, Gordon JI, Trautwein C, Werner S (2003) Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene. 22:4380–4388

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Robert A, Goff L, Pertea G, Kim D, Kelly DR, Pimental H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utzschneider KM, Kahn SE (2006) The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91(12):4753–4761

    Article  CAS  PubMed  Google Scholar 

  • Wilson GJ, Lennox BA, She P, Mirek ET, Al Baghdadi RJ, Fusakio ME, Dixon JL, Henderson GC, Wek RC, Anthony TG (2015) GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am J Physiol Endocrinol Metab 308(4):E283–E293

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Choiniere J, Lin M, Wang L (2017) Pyruvate dehydrogenase kinase 4-deficiency induces hepatic apoptosis by activating NF-κB/TNFα signaling. FASEB J:470–479

  • Xue B, Zemel MB (2000) Relationship between human adipose tissue agouti and fatty acid synthase (FAS). J Nutr 130(10):2478–2481

    Article  CAS  PubMed  Google Scholar 

  • Zhu LH, Wang A, Luo P, Wang X, Jiang DS, Deng W, Zhang X, Wang T, Liu Y, Gao L, Zhang S (2014) Mindin/Spondin 2 inhibits hepatic steatosis, insulin resistance, and obesity via interaction with peroxisome proliferator-activated receptor α in mice. J Hepatol 60(5):1046–1054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, ICAR-National Dairy Research Institute and National Agricultural Science Fund, India, for providing the infrastructure and financial assistance (Grant No. NASF/GTR-5005/2015-16), respectively, to this work. Thanks to Mr. Ashwani Kumar, Director of NXGenbio Life Sciences for custom NGS analysis and Dr. Mamta Pandey for editing the tables and figures. The authors do not have any conflict of research and financial interests.

Funding

The National Agricultural Science Fund, India, provided the financial support to this work (Grant No. NASF/GTR-5005/2015–16).

Author information

Authors and Affiliations

Authors

Contributions

SKO and DS designed and organized the research work. SS, NG, and DaS performed experiments. SS and SKO analyzed the data. SS, DS, and SKO wrote the manuscript.

Corresponding author

Correspondence to Suneel Kumar Onteru.

Ethics declarations

A total of six healthy buffaloes considered in the present study were approved by the Institutional Animal Ethics Committee of the National Dairy Research Institute, Karnal (Approval no. 95/16).

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4115 kb)

ESM 2

(DOCX 4408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Golla, N., Sharma, D. et al. Buffalo liver transcriptome analysis suggests immune tolerance as its key adaptive mechanism during early postpartum negative energy balance. Funct Integr Genomics 19, 759–773 (2019). https://doi.org/10.1007/s10142-019-00676-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-019-00676-1

Keywords

Navigation