Skip to main content
Log in

An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akter A, Islam MM, Mondal SI, Mahmud Z, Jewel NA, Ferdous S, Amin MR, Rahman MM (2014) Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci 21:3–12

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data. URL http://www.Bioinformatics.Babraham.Ac.Uk/projects/fastqc

  • Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2012) Cytochromes p450. Arabidopsis Book 9:e0144

    Article  Google Scholar 

  • Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H (2015) The greater phenotypic homeostasis of the allopolyploid Coffea arabica improved the transcriptional homeostasis over that of both diploid parents. Plant Cell Physiol 56:2035–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bu Y, Sun B, Zhou A, Zhang X, Lee I, Liu S (2013) Identification and characterization of a PutAMT1; 1 Gene from Puccinellia tenuiflora. PLoS One 8(12):e83111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    Article  CAS  PubMed  Google Scholar 

  • Camañes G, Cerezo M, Primo-Millo E, Gojon A, Garcia-Agustin P (2009) Ammonium transport and CitAMT1 expression are regulated by light and sucrose in Citrus plants. J Exp Bot 58:2811–2825

    Article  CAS  Google Scholar 

  • Cardoso DC, Martinati JC, Giachetto PF, Vidal RO, Carazzolle MF, Padilha L, Guerreiro-Filho O, Maluf MP (2014) Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics 15:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Carelli MLC, Fahl JI (1991) Distribuição da assimilação do nitrato e da matéria seca em plantas jovens de café cultivadas em diferentes níveis de nitrogênio. Bragantia 50:29–37

    Article  CAS  Google Scholar 

  • Carelli MLC, Fahl JI, Ramalho JDC (2006) Aspects of nitrogen metabolism in coffee plants. Braz J Plant Physiol 18:9–21

    Article  CAS  Google Scholar 

  • Castro-Rodríguez V, García-Gutiérrez A, Cañas RA, Pascual MB, Avila C, Cánovas FM (2015) Redundancy and metabolic function of the glutamine synthetase gene family in poplar. BMC Plant Biol 15:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  • Chapman DJ, Harrison PJ (1988) Nitrogen metabolism and measurement of nitrate reductase activity. In: Lobban CS, Chapman DJ, Kremer B (eds) Experimental phycology. A laboratory manual. Cambridge University Press, Cambridge, pp 196–202

    Google Scholar 

  • Chaves SS, Fernandes-Brum CN, Silva GFF, Ferrara-Barbosa BC, Paiva LV, Nogueira FTS, Cardoso TCS, Amaral LR, de Souza GM, Chalfun-Junior A (2015) New insights on Coffea miRNAs: features and evolutionary conservation. Appl Biochem Biotech 177:879–908

    Article  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179–e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark RB (1975) Characterization of phosphatase of intact maize roots. J Agr Food Chem 23:458–460

    Article  CAS  Google Scholar 

  • Coleman HD, Canovas FM, Man H, Kirby EG, Mansfield SD (2012) Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula x alba) (717-1B4). Plant Biotech J 10:883–889

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–13

    Article  CAS  Google Scholar 

  • Crawford N, Glass A (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Cruz JL, Mosquim PR, Pelacani CR, Araújo WL, DaMatta FM (2004) Effects of nitrate nutrition on nitrogen metabolism in cassava. Biol Plantarum 48:67–72

    Article  CAS  Google Scholar 

  • da Silva AC, Grativol C, Thiebaut F, Hemerly AS, Ferreira PCG (2016) Computational identification and comparative analysis of miRNA precursors in three palm species. Planta 243:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho K, Bespalhok Filho JC, dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS (2013) Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 53:315–325

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho K, Petkowicz CL, Nagashima GT, Bespalhok Filho JC, Vieira LG, Pereira LFP, Domingues DS (2014) Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Gen Genomics 289:951–963

    Article  CAS  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley J, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono RM, Rouard M, Rozas J, Tranchant-Dubreui C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, Kochko A, Graziosi G, Henry RJ, Jayarama MR, Nagai C, Rounsley S, Sankof D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Devi KJ, Chakrabortya S, Debb B, Rajwanshia R (2016) Computational identification and functional annotation of microRNAs and their targets from expressed sequence tags (ESTs) and genome survey sequences (GSSs) of coffee (Coffea arabica L.). Plant Gene 6:30–42

    Article  CAS  Google Scholar 

  • dos Santos TB, Lima JE, Felicio MS, Soares JDM, Domingues DS (2017) Genome- wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet Mol Biol 40:346–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dovis VL, Hippler FWR, Silva KI, Ribeiro RV, Machado EC, Mattos D Jr (2014) Optimization of the nitrate reductase activity assay for citrus trees. Braz J Bot 37:383–390

    Article  Google Scholar 

  • Fernandez D, Tisserant E, Talhinhas P, Azinheira H, Vieira A, Petitot AS, Loureiro A, Poulain J, da Silva C, Do Céu Silva M, Duplessis S (2012) 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant–rust interaction. Mol Plant Pathol 13:17–37

    Article  CAS  PubMed  Google Scholar 

  • Ferreira DF (2011) Sisvar: Sistema de análise de variância para dados balanceados. Versão 5.3, Build 75. Lavras: DEX/ UFLA

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. BBA-Biomembranes 1465:219–235

    Article  CAS  PubMed  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma BBW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graff L, Obrdlik P, Yuan L, Loqué D, Frommer WB, von Wirén N (2011) N-terminal cysteines affect oligomer stability of the allosterically regulated ammonium transporter LeAMT1;1. J Exp Bot 62:1361–1373

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen ZJ (2014) miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 5:3050

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:R7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyot R, Chaparro C, Bocs S, Dereeper A, Jamilloux V, Domingues DS, Lashermes P (2014) The repetitive landscape of the Robusta coffee genome. In: 11th Solanaceae Conference: 52–52

  • Guzman F, Almerão MP, Körbes AP, Loss-Morais G, Margis R (2012) Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis. PLoS One 7(11):e49811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberle H, Vaz Meirelles G, da Silva FR, Telles GP, Minghim R (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Phys 151:2120–2132

    Article  Google Scholar 

  • Ivamoto ST, Sakuray LM, Ferreira LP, Kitzberger CSG, Scholz MBS, Pot D, Leroy T, Vieira LGE, Domingues DS, Pereira LFP (2017a) Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiol Bioch 111:340–347

    Article  CAS  Google Scholar 

  • Ivamoto ST, Reis Júnior O, Domingues DS, dos Santos TB, de Oliveira FF, Pot D, Leroy T, Vieira LGE, Carazzolle MF, Pereira GAG, LFP P (2017b) Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L. reveals the differential expression of genes Involved in raffinose biosynthesis. PloS ONE 12(1):e0169595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia X, Jie S, Hui L, Fang L, Na D, Changgyong G, Sitakanta P, Barunava P, Runzhi L, Ling Y (2015) Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283–293

    Article  CAS  PubMed  Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, Kochko A, Dussert S (2009) Metabolic pathways in tropical dicot albuminous seeds: Coffea arabica as a case study. New Phytol 182:146–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, Lashermes F, Dussert S (2014) Regulation of galactomannan biosynthesis in coffee seeds. J Exp Bot 65:323–337

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytoge Gen Res 110:462–467

    Article  CAS  Google Scholar 

  • Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in. Plant Sci 6:506

    Google Scholar 

  • Kojima S, Bohner A, Gassert B, Yuan L, von Wirén N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Phys 157:1255–1258

    Article  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signalling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273

    Article  CAS  PubMed  Google Scholar 

  • Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R (2015) NPK macronutrients and microRNA homeostasis. Frontiers in Plant Sci 6:451

    Article  Google Scholar 

  • Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB (2009) Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21:3610–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Han JL, Chang YH, Lin J, Yang QS (2016) Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia). J Plant Res 129:737–748

    Article  CAS  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7(11):e48951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wiren N (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. The Plant J 48:522–534

  • Loss-Morais G, Ferreira DCR, Margis R, Alves-Ferreira M, Corrêa RL (2014) Identification of novel and conserved microRNAs in Coffea canephora and Coffea arabica. Genet Mol Biol 37:671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Qin J, He F, Li H, Liu T, Polle A, Peng C, Luo ZB (2013) Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta 237:919–931

    Article  CAS  PubMed  Google Scholar 

  • Marraccini P, Vinecky F, Alves GS, Ramos HJ, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qio Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2007) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59:111–119

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa M et al (1999) Análise química de tecido vegetal. In: Silva, f. c. da (Org.). Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, Brasília, pp 171–223

    Google Scholar 

  • Mofatto LS, de Araújo CF, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GAG, Andrade AC, Marraccini P (2016) Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biol 16:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath M, Tuteja N (2016) NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma 253:767–786

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. BBA-Proteins and Proteomics 1814:14–18

    Article  CAS  PubMed  Google Scholar 

  • Noguero M, Atif RM, Ochatt S, Thompson RD (2013) The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci 209:32–45

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  CAS  PubMed  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Phys 150:1541–1555

    Article  CAS  Google Scholar 

  • Pompelli MF, Martins SCV, Antunes WC, Chaves ARM, DaMatta FM (2010) Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. J Plant Physiol 13:1052–1060

    Article  CAS  Google Scholar 

  • Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273

    Article  CAS  Google Scholar 

  • Queiroz CGS, Alves JD, Rena AB, Cordeiro AT (1991) Efeito do cloranfenicol, n- propanol, pH e temperatura sobre a atividade in vivo da redutase do nitrato em cafeeiros jovens. Rev Bras Bot 14:73–77

    Google Scholar 

  • Queiroz CGS, Rena AB, Cordeiro AT, Alves JD (1993) Ritmo diurno na atividade da redutase de nitrato em folhas e raízes de Coffea arabica L. Pesqui Agropecu Bras 28:787–795

    Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: <http://www.r-project.org>

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR (2014) De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Phys 166:1186–1199

    Article  CAS  Google Scholar 

  • Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol 12:275–291

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossa MM (1999) A luz como fator de regulação da atividade enzimática da nitrato redutase (NR) e superóxido dismutase (SOD) em Gracilariopsis tenuifrons (Rhodophyta). Dissertação de mestrado, Universidade de São Paulo, São Paulo

  • Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Phys 146:2020–2035

    Article  CAS  Google Scholar 

  • Santos FC, Guyot R, Do Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela ALL (2015) Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosom Res 23:571–582

    Article  CAS  Google Scholar 

  • SAS Institute (2004) SAS/GRAPH 9.1 reference. SAS Institute

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Phys 136:2483–2499

    Article  CAS  Google Scholar 

  • Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK (2016) MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development Plant Physiol 171:944–959

  • Silva FAZ, Azevedo CAV (2013) Versão atualizada do software estatístico Assistat. Versão 7.6 beta <http://www.assistat.com>

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  PubMed  CAS  Google Scholar 

  • Song S, He Z, Huang X, Zhong L, Liu H, Sun G, Chen R (2017) Cloning and characterization of the ammonium transporter genes BaAMT1; 1 and BaAMT1; 3 from Chinese kale. Hortic Environ Biotechnol 58:178–186

    Article  CAS  Google Scholar 

  • Sorgona A, Lupini A, Mercati F, Di Dio L, Sunseri F, Abenavoli MR (2011) Nitrate uptake along the maize primary root: an integrated physiological and molecular approach. Plant Cell Environ 34:1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C (2014) A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytol 202:1197–1211

    Article  CAS  PubMed  Google Scholar 

  • Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103:38–49

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  CAS  PubMed  Google Scholar 

  • Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub D, Ludewig U, Neuhäuser B (2014) A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula. Plant Mol Biol 86:485–494

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Qu S, Zhang J, Wang F, Tao J, Gao Z, Zhang Z (2012) A modified protocol for RNA extraction from different peach tissues suitable for gene isolation and real-time PCR analysis. Mol Biotechnol 50:229–236

    Article  CAS  PubMed  Google Scholar 

  • Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S (2012) Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant Cell Environ 35:1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Valiollahi E, Farsi M, Kakhki AM (2014) Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotech Rep 8:349–356

    Article  Google Scholar 

  • Van Bel M, Proost S, Van Neste C, Deforce D, Van de Peer Y, Vandepoele K (2013) TRAPID: an eficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol 14(1):R134

    PubMed  PubMed Central  Google Scholar 

  • van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204:243–256

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicient CM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics 11:601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. P Natl Acad Sci 107:4477–4482

    Article  CAS  Google Scholar 

  • Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA (2013) Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics 14:701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira LGE, Andrade AC, Colombo CA, Moraes AHDA, Metha Â, Oliveira ACD, Labate CA, Marino CL, Monteiro-Vitorello CB, Monte DC, Giglioti E, Kimura ET, Romano E, Kuramae EE, Lemos EGM, Almeira ERP, Jorge EC, Albuquerque EVS, Silva FR, Vinecky F, Sawazaki HE, Dorry HFA, Carrer H, Abreu IN, Batista JAN, Teixeira JB, Kitajima JP, Xavier KG, Lima LM, Camargo LEA, Pereira LFP, Coutinho LL, Lemos MVF, Romano MR, Machado MA, Costa MMC, Sá MFG, Goldman MHS, Ferro MIT, Tinoco MLP, Oliveira MC, Sluys MAV, Shimizu MM, Maluf MP, Eira MTS, Filho OG, Arruda P, Mazzafera P, Mariani PDSC, Oliveira RLBC, Harakava R, Balbao SF, Tsai SM, Mauro SMZ, Santos SN, Siqueira WJ, Costa GGL, Formighieri EF, Carazzolle MF, Pereira GAG (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    Article  CAS  Google Scholar 

  • von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014) Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14:11

    Article  CAS  Google Scholar 

  • Wallsgrove RM, Lea PJ, Miflin BJ (1979) Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Phys 63:232–236

    Article  CAS  Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L (2013) Elucidation of miRNAs mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 8(7):e67423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Yordanov YS, Georgieva T, Li X, Busov V (2013) Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytol 200:483–497

    Article  CAS  PubMed  Google Scholar 

  • Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S, Liu R, Wang Y, Tang G, Meyers BC, Chen X, Ma W (2014) Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6(11):e28009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L (2013) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101

    Article  PubMed  CAS  Google Scholar 

  • Xu ZC, Peters RJ, Weirather J, Luo HM, Liao BS, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au KF, Song J, Chen S (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang N, Mi X, Wu L, Ma R, Zhu X, Yao L, Jin X, Si H, Wang D (2014) Identification of miR159s and their target genes and expression analysis under drought stress in potato. Comput Biol Chem 53:204–213

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wiren N (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19:2636–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Graff L, Loque D, Kojima S, Tsuchiya YN, Takahashi H, von Wiren N (2009) AtAMT1;4, a affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol 50:13–25

  • Yuyama PM, Reis Junior O, Ivamoto ST, Domingues DS, Carazzole MF, Pereira GAG, Charmetant P, Leroy T, Pereira LFP (2016) Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Gen Genomics 291:323–336

    Article  CAS  Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7(1):e29669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Xu Z, Mo Q, Zou C, Li W, Xu Y, Xie C (2013) Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann Bot 112:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study received grants from Brazilian Coffee Research Consortium, Fundação Araucária, CAPES (Ciência sem Fronteiras PVE 084/2013) and CNPq. TBS, JDMS, JCS, VYB, and STI acknowledge CAPES, CNPq, and FAPESP for the student fellowships. DSD, LGEV, and LFPP are CNPq research productivity fellows.

Author information

Authors and Affiliations

Authors

Contributions

TBS, LGEV, and LFPP conceived and designed the research, performed transcriptional experiments, wrote and revised the final manuscript; ARM assisted in designing the experiment; JEL performed experiments using 15N and wrote the manuscript; STI RT-qPCR statistical analysis, revised the final manuscript; JDMS and VYB RT-qPCR and statistical analyses; SGHS performed GS and NR analyses; JBM and PM performed the amino acid analysis; MYNJ, JCS, ORJ, APRL, and ARP bioinformatic analysis; ILMJA and UCO library construction and mRNAseq sequencing; RG and DSD transposable element analysis, coordinated the research, and revised the final manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tiago Benedito dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(XLS 280 kb)

ESM 2

(FA 2908 kb)

Fig. S1

N starvation experiment scheme. a Initially, seeds were germinated in sand boxes and transfered to pots with continuous N supply. Three-month-old plants were transferred to a nutrient solution based on Clark’s (1975). After acclimation, plants were harvested (experimental control, day 0) and then transferred to N-starvation solution for 10 days. b Lateral roots were collected for analysis at different sampling times (day 0, day 1, and day 10). (JPG 63 kb)

Fig. S2

Quantification of total N and related-enzymes in coffee root. a Total concentration of N in coffee roots. b Nitrate reductase (NR) enzyme activity in coffee roots. c Glutamine synthetase (GS) enzyme activity in coffee roots under N starvation. Different letters above the bars indicate statistically significant differences (Student’s t test; p < 0.05). FW fresh weight (JPG 50 kb)

Fig. S3

Number of assembled sequences with hits in the Coffea canephora reference transposable elements (TE) database (806), RepBase Plants transposable elements database (35), and both databases (21). (JPG 63 kb)

Fig. S4

miRNA hairpin sequences of conserved families and precursors found in the Coffea canephora genome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 541 kb)

Fig. S5

miRNA hairpin sequences of conserved families and precursors found in Coffea arabica root transcriptome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 40 kb)

Fig. S6

New miRNA families and precursors identified in Coffea canephora genome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 903 kb)

Fig. S7

Eight new miRNA families and precursors identified in Coffea arabica root transcriptome. Expected miRNA and miRNA* sequences are represented in red and blue, respectively. (DOC 40 kb)

Fig. S8

Annotation of the 253 putative miRNAs target genes identified in our coffee root trancriptome database. The most represented classes were divided into three main categories: “cellular component,” “molecular function,” and “biological process.” (JPG 102 kb)

Fig. S9

Proposed model for the representation of ammonium and nitrate transporters in coffee roots under N starvation. (JPG 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.B., Soares, J.D.M., Lima, J.E. et al. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Funct Integr Genomics 19, 151–169 (2019). https://doi.org/10.1007/s10142-018-0634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-018-0634-8

Keywords

Navigation