Skip to main content
Log in

Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The tea plant is an important commercial horticulture crop cultivated worldwide. Yield and quality of this plant are influenced by abiotic stress. The bHLH family transcription factors play a pivotal role in the growth and development, including abiotic stress response, of plants. A growing number of bHLH proteins have been functionally characterized in plants. However, few studies have focused on the bHLH proteins in tea plants. In this study, 120 CsbHLH TFs were identified from tea plants using computational prediction method. Structural analysis detected 23 conservative residues, with over 50% identities in the bHLH domain. Moreover, 103 CsbHLH proteins were assumed to bind DNA and encompassed 98 E-Box binders and 85 G-Box binders. The CsbHLH proteins were grouped into 20 subfamilies based on phylogenetic analysis and a previous classification system. A survey of transcriptome profiling screened 22 and 39 CsbHLH genes that were upregulated under heat and drought stress. Nine CsbHLH genes were validated using qRT-PCR. Results were approximately in accordance with transcriptome data. These genes could be induced by one or more abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AIB:

ABA-inducible bHLH-type transcription factor

bHLH:

Basic helix-loop-helix

BLAST:

Basic Local Alignment Search Tool

BRs:

Brassinosteroids

CBF:

C-repeat binding factor

COE:

Collier/Olf-1/EBF

FPKM:

Fragments per kilobase of transcript per million mapped reads

GO:

Gene ontology

HMM:

Hidden Markov model

JA:

Jasmonic acid

MEGA:

Molecular evolutionary genetics analysis

MEME:

Multiple Em for motif elicitation

NCBI:

National Center for Biotechnology Information

NJ:

Neighbor-joining

PAS:

Per-Arnt-Sim

PEG:

Polyethylene glycol

qRT-PCR:

Quantitative real-time polymerase chain reaction

RNA-Seq:

RNA sequencing

TF:

Transcription factor

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad A, Niwa Y, Goto S, Ogawa T, Shimizu M, Suzuki A, Kobayashi K, Kobayashi H (2015) bHLH106 integrates functions of multiple genes through their G-box to confer salt tolerance on Arabidopsis. PLoS One 10(5):e0126872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  Google Scholar 

  • Atchley WR, Fitch WM (1997) A natural classification of the basic helix–loop–helix class of transcription factors. Proc Natl Acad Sci U S A 94(10):5172–5176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48(5):501–516

    Article  PubMed  CAS  Google Scholar 

  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15(5):2497–2502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153(3):1398–1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12(11):514–521

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Yu M, Xu J, Chen X, Shi J (2009) Differentiation of eight tea (Camellia sinensis) cultivars in China by elemental fingerprint of their leaves. J Sci Food Agric 89(14):2350–2355

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B-H, Hong X, Agarwal M, Zhu J-K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17(8):1043–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS One 9(11):e111988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome a and cryptochrome signalling. Plant J 34(6):827–836

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (2008) A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4(5):e1000069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ (2011) Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new Ortholog groups. Curr Protoc Bioinformatics 6(12):11–16 12. 19

    Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162(3):1445–1456

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429(1–2):98–103

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodrich J, Carpenter R, Coen ES (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68(5):955–964

    Article  PubMed  CAS  Google Scholar 

  • Gremski K, Ditta G, Yanofsky MF (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134(20):3593–3601

    Article  PubMed  CAS  Google Scholar 

  • Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall T (2011) BioEdit: an important software for molecular biology. GERF bull. Biosci 2(1):60–61

    Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747. https://doi.org/10.1093/molbev/msg088

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Gen Genomics 282(5):503–516

    Article  CAS  Google Scholar 

  • Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45(D1):D1040–D1045

    Article  PubMed  CAS  Google Scholar 

  • Kavas M, Baloğlu MC, Atabay ES, Ziplar UT, Daşgan HY, Ünver T (2016) Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol Gen Genomics 291(1):129–143

    Article  CAS  Google Scholar 

  • Kiribuchi K, Jikumaru Y, Kaku H, MINAMI E, HASEGAWA M, KODAMA O, SETO H, OKADA K, NOJIRI H, YAMANE H (2005) Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem 69(5):1042–1044

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231(2):364–373

    Article  PubMed  CAS  Google Scholar 

  • Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ishikawa A, Koshi T, Matsui R, Muto S (2008) RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control EMBRYO growth. Plant Physiol 147(4):1924–1935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurbidaeva A, Novokreshchenova M, Ezhova T (2015) ICE genes in Arabidopsis thaliana: clinal variation in DNA polymorphism and sequence diversification. Biol Plant 59:245–252

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11(5):754–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee C-M, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109(37):15054–15059

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee B-H, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141(4):1167–1184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Sun J, Xu Y, Jiang H, Wu X, Li C (2007) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol 65(5):655–665

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Wang F, Jiang Q, Ma J, Xiong AS (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Liljegren SJ, Roeder AH, Kempin SA, Gremski K, Østergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116(6):843–853

    Article  PubMed  CAS  Google Scholar 

  • Lindemose S, O'Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14(3):5842–5878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201(4):1192–1204

    Article  PubMed  CAS  Google Scholar 

  • Liu Z-W, Wu Z-J, Li X-H, Huang Y, Li H, Wang Y-X, Zhuang J (2016) Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 576:52–59

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Lou W, Sun S, Wu L, Sun K (2015) Effects of climate change on the economic output of the Longjing-43 tea tree. 1972–2013. Int J Biometeorol 59(5):593–603

    Article  PubMed  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A 86(18):7092–7096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56(5):777–783

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12(10):1863–1878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol 27(4):862–874

    Article  PubMed  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen HT, Mol JN, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5(11):1497–1512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol 11(24):1914–1922

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3(5):423–434

    Article  PubMed  CAS  Google Scholar 

  • Sailsbery JK, Dean RA (2012) Accurate discrimination of bHLH domains in plants, animals, and fungi using biologically meaningful sites. BMC Evol Biol 12:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M (2001) The purple leaf (Pl) locus of rice: the Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol 42(9):982–991

    Article  PubMed  CAS  Google Scholar 

  • Song XM, Huang ZN, Duan WK, Ren J, Liu TK, Li Y, Hou XL (2014) Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Gen Genomics 289(1):77–91

    Article  CAS  Google Scholar 

  • Sun H, Fan HJ, Ling HQ (2015) Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 16:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szécsi J, Joly C, Bordji K, Varaud E, Cock JM, Dumas C, Bendahmane M (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. T. EMBO J 25(16):3912–3920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15(8):1749–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Jiang C-J, Li Y-Y, Wei C-L, Deng W-W (2012) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-X, Liu Z-W, Wu Z-J, Li H, Zhuang J (2016a) Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS One 11(11):e0166727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Xin H, Mingle Wang QM, Wang L, Kaleri NA, Wang Y, Li X (2016b) Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci 7:385

    PubMed  PubMed Central  Google Scholar 

  • Wu Z-J, Li XH, Liu ZW, Xu Z-S, Zhuang J (2014) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol 14:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin J, Chang X, Kasuga T, Bui M, Reid MS, Jiang CZ (2015) A basic helix-loop-helixtranscription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Hortic Res 2:15059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue H, Wang M, Liu S, Du X, Song W, Nie X (2016) Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in broomcorn millet (Panicum miliaceum L.) BMC Genomics 17:343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133(16):3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics 13(1):75–98

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic Res 1:14029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (31570691).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JZ, XC. Performed the experiments: XC, YXW, ZWL, WLW, HL. Analyzed the data: XC, YXW, JZ. Contributed reagents/materials/analysis tools: JZ. Wrote the paper: XC. Revised the paper: JZ, XC, YXW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Zhuang.

Electronic supplementary material

Figure S1

Multiple alignments of CsbHLH proteins (GIF 368 kb)

High resolution image (TIFF 10597 kb)

Table S1

(XLSX 37 kb)

Table S2

(XLSX 121 kb)

Table S3

(XLSX 18 kb)

Table S4

(XLSX 20 kb)

Table S5

(XLSX 38 kb)

Table S6

(XLSX 10 kb)

Table S7

(XLSX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Wang, YX., Liu, ZW. et al. Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis. Funct Integr Genomics 18, 489–503 (2018). https://doi.org/10.1007/s10142-018-0608-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-018-0608-x

Keywords

Navigation