Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil


One of the main challenges in elimination of oil contamination from polluted environments is improvement of biodegradation by highly efficient microorganisms. Bacillus subtilis MJ01 has been evaluated as a new resource for producing biosurfactant compounds. This bacterium, which produces surfactin, is able to enhance bio-accessibility to oil hydrocarbons in contaminated soils. The genome of B. subtilis MJ01 was sequenced and assembled by PacBio RS sequencing technology. One big contig with a length of 4,108,293 bp without any gap was assembled. Genome annotation and prediction of gene showed that MJ01 genome is very similar to B. subtilis spizizenii TU-B-10 (95% similarity). The comparison and analysis of orthologous genes carried out between B. subtilis MJ01, reference strain B. subtilis subsp. subtilis str. 168, and close relative spizizenii TU-B-10 by microscope platform and various bioinformatics tools. More than 88% of 4269 predicted coding sequences in MJ01 had at least one similar sequence in genome of reference strain and spizizenii TU-B-10. Despite this high similarity, some differences were detected among encoding sequences of non-ribosome protein and bacteriocins in MJ01 and spizizenii TU-B-10. MJ01 has unique nucleotide sequences and a novel predicted lasso-peptide bacteriocin; it also has not any similar nucleotide sequence in non-redundant nucleotide data base.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Ali A, Soares SC, Barbosa E, Santos AR, Barh D, Bakhtiar SM et al (2013) Microbial comparative genomics: an overview of tools and insights into the genus Corynebacterium. J Bacteriol Parasitol 4(2):1–16.

    Article  Google Scholar 

  2. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 1–6.

  3. Auch AF, von Jan M, Klenk H-P, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ben Ayed H, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49(10):1699–1707.

    Article  CAS  Google Scholar 

  5. Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178.

    Article  CAS  Google Scholar 

  6. de Silva R, CFS, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci Multidiscip Digit Publ Inst (MDPI) 15:12523–12542.

  7. Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R, Nizam F, Pereira SK, Waglechner N, McArthur AG, Langille MGI, Brinkman FSL (2015) IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 43(W1):W104–W108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129.

    Article  PubMed  CAS  Google Scholar 

  9. Hutchison CA, Chuang R-YR-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH et al (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253–aad6253.

    Article  PubMed  CAS  Google Scholar 

  10. Jha SS, Joshi SJ, Geetha SJ (2016) Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz J Microbiol 47(4):955–964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jolley KA, Maiden MCJ (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11(1):595.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kamada M, Hase S, Sato K, Toyoda A, Fujiyama A, Sakakibara Y (2014) Whole genome complete resequencing of Bacillus subtilis natto by combining long reads with high-quality short reads. PLoS One 9(10):e109999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kamada M, Hase S, Fujii K, Miyake M, Sato K, Kimura K, Sakakibara Y (2015) Whole-genome sequencing and comparative genome analysis of bacillus subtilis strains isolated from non-salted fermented soybean foods. PLoS One 10(10):e0141369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, Mcvey SD, Radune D, Bergman NH, Phillippy AM (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14(9):R101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Land M, Hauser L, Jun S-R, Nookaew I, Leuze MR, Ahn T-H, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15(2):141–161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liang Y, Zhao H, Deng Y, Zhou J, Li G, Sun B (2016) Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front Microbiol 7:60.

    PubMed  PubMed Central  Article  Google Scholar 

  17. McArthur AG, Wright GD (2015, October) Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr Opin Microbiol 27:45–50.

    Article  PubMed  Google Scholar 

  18. Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications. Genomics, Proteomics and Bioinformatics, pp. 278–289. 10.1016/j.gpb.2015.08.002, PacBio Sequencing and Its Applications

  19. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931.

    Article  PubMed  CAS  Google Scholar 

  20. Shaligram S, Kumbhare SV, Dhotre DP, Muddeshwar MG, Kapley A, Joseph N, Purohit HP, Shouche YS, Pawar SP (2016) Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Functional and Integrative Genomics 1–10.

  21. Sharma A, Satyanarayana T (2013) Comparative genomics of Bacillus species and its relevance in industrial microbiology. Genomics Insights Libertas Academica 6:GEI.S12732.

    Article  CAS  Google Scholar 

  22. Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2014) Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming Bacteria: an insight review. Sci World J 2014:1–12.

    Article  CAS  Google Scholar 

  23. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, Lajus A et al (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database 2009:bap021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuipers OP (2013) BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 41(Web Server issue):W448–W453.

  25. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, le Fèvre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Médigue C (2013) MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41(Database issue):D636–D647.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43(W1):W78–W84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yu G, Wang XC, Tian WH, Shi JC, Wang B, Ye Q, Dong SG, Zeng M, Wang JZ (2015) Genomic diversity and evolution of Bacillus subtilis. Biomed Environ Sci : BES 28(8):620–625.

    PubMed  Article  Google Scholar 

Download references


We thank to the LABGeM and the National Infrastructure « France Genomique », for their useful MicroScope platform tools and providing genome annotation and comparative analysis for MJ01 genome. We would also thanks to Mr. Moien Jahanbani Veshareh for providing MJ01 strain bacteria. This study was supported by Department of Biotechnology, Agriculture Faculty of Shiraz University.

Author information



Corresponding authors

Correspondence to Ali Niazi or Esmaeil Ebrahimie.

Electronic supplementary material


(DOCX 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahimi, T., Niazi, A., Deihimi, T. et al. Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil. Funct Integr Genomics 18, 533–543 (2018).

Download citation


  • Bacillus subtilis
  • Whole genome
  • Biodegradation
  • Genome interpretation
  • Genomics comparison
  • Biosurfactant
  • Micro scope platform