Skip to main content
Log in

Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Aquaporins are versatile proteins involved in several biological as well as molecular functions, and they have been extensively studied in various plant systems. Increasing evidences indicate their role in biotic and abiotic stresses, and therefore, studying these proteins in a naturally stress-tolerant crop would provide further insights into the roles of this important protein family. Given this, the present study was performed in foxtail millet (Setaria italica), a model plant for studying biofuel, stress tolerance, and C4 photosynthetic traits. The study identified 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), and 3 small basic intrinsic proteins (SIPs) in foxtail millet. The identified proteins and their corresponding genes were characterized using in silico approaches such as chromosomal localization, analysis of gene and protein properties, phylogenetic analysis, promoter analysis, and RNA-seq-derived expression profiling. The candidate genes identified through these analyses were studied for their expression in response to abiotic stresses (dehydration, salinity, and heat) as well as hormone treatments (abscisic acid, methyl jasmonate, and salicylic acid) in two contrasting cultivars of foxtail millet. The study showed that SiPIP3;1 and SiSIP1;1 were differentially expressed in both the cultivars in response to stress and hormone treatments. Overexpression of these genes in a heterologous yeast system also demonstrated that the transgenic cells were able to tolerate dehydration as well as salt stress which suggests the involvement of these proteins in the tolerance mechanism. Overall, the present study provides insights into structure and organization of the aquaporin gene family in foxtail millet and highlights the potential candidate genes for further functional characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderberg HI, Kjellbom P, Johanson U (2012) Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Front Plant Sci 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  Google Scholar 

  • Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deokar AA, Tar’an B (2016) Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Front Plant Sci 7:1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbe C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H, Labbé C, Isenring P, Belzile FJ, Bélanger RR (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83:489–500

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Sonah H, Bélanger RR (2016) Plant aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7:1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2010) HMMER user’s guide. Available online at: HMMER website: ftp://selab.janelia.org/pub/software/hmmer/CURRENT/Userguide.pdf. Accessed December 28, 2017

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana Press, New York, USA, pp 571–607

  • Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228

    Article  CAS  PubMed  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome–wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heymann JB, Engel A (1999) Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci 14:187–193

    CAS  PubMed  Google Scholar 

  • Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS One 10:e0128025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176

    Article  CAS  Google Scholar 

  • Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS (2017) Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol 17:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Muthamilarasan M, Prasad M (2013) Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions. Plant Cell Tissue Organ Cult 115:13–22

    Article  CAS  Google Scholar 

  • Lee TH, Kim J, Robertson JS, Paterson AH (2017) Plant genome duplication database. Methods Mol Biol 1533:267–277

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang H, Zhang Z, Wu J, Feng Y, Zhu Z (2009) Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genomics 10:313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Boursiac Y, Luu D–T, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • McGaughey SA, Osborn HL, Chen L, Pegler JL, Tyerman SD, Furbank RT, Byrt CS, Grof CP (2016) Roles of aquaporins in Setaria viridis stem development and sugar storage. Front Plant Sci 7:1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin–1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2017) Genetic determinants of drought stress tolerance in Setaria. In: Doust A, Diao X (eds) Genetics and genomics of Setaria. Plant genetics and genomics: crops and models, vol 19. Springer, Cham, pp 267–289

    Chapter  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, Prasad M (2014) C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics 14:531–543

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910

    PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97

    Article  CAS  PubMed  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36:1065–1078

    Article  CAS  Google Scholar 

  • Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7:46137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 6:32641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonah H, Deshmukh R, Labbé C, Belanger R (2017) Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 7:2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JA (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav CB, Muthamilarasan M, Dangi A, Shweta S, Prasad M (2016) Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance. Sci Rep 6:32621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RKS and RR acknowledge the Council of Scientific and Industrial Research and Department of Biotechnology, Government of India, India, respectively, for providing Research Fellowships. SS acknowledges the National Post-Doctoral Fellowship received from DST-SERB, Government of India, India. MM acknowledges the DST INSPIRE Faculty Award from Department of Science & Technology, Government of India, India. The authors are thankful to DBT-eLibrary Consortium (DeLCON) for providing access to the e-resources.

Funding

Authors’ research in this area is supported by the Core Grant of National Institute of Plant Genome Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: MP; experimental analyses: RKS, SS, RR, and MM; interpretation of data: MM and RKS; writing, review and revision of manuscript: MM and RKS; study supervision: MP; all authors have read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure S1

Exon-Intron structure of aquaporin genes. (PNG 698 kb)

High Resolution Image (TIF 1191 kb)

Supplementary Figure S2

Sub-cellular localization of aquaporin genes. (PNG 174 kb)

High Resolution Image (TIF 407 kb)

Supplementary Figure S3

Comparative physical map of aquaporin genes between foxtail millet (Si; Setaria italica) and green foxtail (Sv; Setaria viridis), Brachypodium (Bd; Brachypodium distachyon), sorghum (Sb; Sorghum bicolor), maize (Zm; Zea mays), rice (Os; Oryza sativa) and switchgrass (Panicum virgatum). Each block represents individual chromosome of each organism and the lines denote the corresponding orthologous genes. (JPG 3022 kb)

High Resolution Image (TIF 1446 kb)

Supplementary Table S1

List of primers used in the present study. (DOC 34 kb)

Supplementary Table S2

Properties of aquaporin genes identified in foxtail millet. (XLS 48 kb)

Supplementary Table S3

Summary of cis-regulatory elements present in aquaporin genes. (XLS 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Shweta, S., Muthamilarasan, M. et al. Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response. Funct Integr Genomics 19, 587–596 (2019). https://doi.org/10.1007/s10142-018-00653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-018-00653-0

Keywords

Navigation