Skip to main content

Advertisement

Log in

Transcriptome and metabolome analysis of Ferula gummosa Boiss. to reveal major biosynthetic pathways of galbanum compounds

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Ferula gummosa Boiss. is an industrial and pharmaceutical plant that has been highly recognized for its valuable oleo-gum-resin, namely galbanum. Despite the fabulous value of galbanum, very little information on the genetic and biochemical mechanisms of its production existed. In the present study, the oleo-gum-resin and four organs (root, flower, stem, and leaf) of F. gummosa were assessed in terms of metabolic compositions and the expression of genes involved in their biosynthetic pathways. Results showed that the most accumulation of resin and essential oils were occurred in the roots (13.99 mg/g) and flowers (6.01 mg/g), respectively. While the most dominant compound of the resin was β-amyrin from triterpenes, the most abundant compounds of the essential oils were α-pinene and β-pinene from monoterpenes and α-eudesmol and germacrene-D from sesquiterpenes. Transcriptome analysis was performed by RNA sequencing (RNA-seq) for the plant roots and flowers. Differential gene expression analysis showed that 1172 unigenes were differential between two organs that 934 (79.6%) of them were up-regulated in the flowers and 238 (20.4%) unigenes were up-regulated in the roots (FDR ≤0.001). The most important up-regulated unigenes in the roots were involved in the biosynthesis of the major components of galbanum, including myrcene, germacrene-D, α-terpineol, and β-amyrin. The results obtained by RNA-Seq were confirmed by qPCR. These analyses showed that different organs of F. gummosa are involved in the production of oleo-gum-resin, but the roots are more active than other organs in terms of the biosynthesis of triterpenes and some mono- and sesquiterpenes. This study provides rich molecular and biochemical resources for further studies on molecular genetics and functional genomics of oleo-gum-resin production in F. gummosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedi D, Jalali M, Sadeghi N (2009) Composition and antimicrobial activity of oleogumresin of Ferula gumosa Bioss. essential oil using Alamar Blue™. Research in Pharmaceutical Sciences 3:41–45

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Reference Source

  • Ashburner M et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832. doi:10.1155/2008/619832

    Article  PubMed  Google Scholar 

  • Dai F, Tang C, Wang Z, Luo G, He L, Yao L (2015) De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genet Genomes 11. doi:10.1007/s11295-015-0851-4

  • Dreher KA (2013) Introduction to the plant metabolic network: data and tools for analysis, discovery, and teaching. Plant and Animal Genome

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Functional & integrative genomics 9:377–396

    Article  CAS  Google Scholar 

  • Fazel Nabavi S, Ebrahimzadeh MA, Mohammad Nabavi S, Eslami B (2010) Antioxidant activity of flower, stem and leaf extracts of Ferula gummosa Boiss. Grasas Aceites 61:244–250

    Article  Google Scholar 

  • Gordon A, Hannon G (2010) Fastx-toolkit FASTQ/A short-reads preprocessing tools (unpublished) http://hannonlab cshl edu/fastx_toolkit

  • Haas BJ et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. doi:10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  • Jahansooz F, Ebrahimzadeh H, Najafi AA, Naghavi MR, Kouyakhi ET, Farzaneh H (2008) Composition and antifungal activity of the oil of Ferula gummosa samples from Iran. Journal of Essential Oil Bearing Plants 11:284–291

    Article  CAS  Google Scholar 

  • Jalali HT, Ebrahimian ZJ, Evtuguin DV, Neto CP (2011) Chemical composition of oleo-gum-resin from Ferula gummosa. Ind Crop Prod 33:549–553

  • Jazayeri SM, Melgarejo-Muñoz LM, Romero HM (2014) Rna-Seq: a glance at technologies and methodologies. Acta Biológica Colombiana 20. doi:10.15446/abc.v20n2.43639

  • Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116:271–302. doi:10.1007/978-1-62703-764-8_18

    Article  CAS  PubMed  Google Scholar 

  • Kalra S, Puniya BL, Kulshreshtha D, Kumar S, Kaur J, Ramachandran S, Singh K (2013) De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS One 8:e83336. doi:10.1371/journal.pone.0083336

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi G, Iranshahi M, Hosseinalizadeh F, Riahi B, Sahebkar A (2010) Screening of acetylcholinesterase inhibitory activity of terpenoid and coumarin derivatives from the genus Ferula. Pharmacologyonline 1:566–574

    Google Scholar 

  • Kouyakhi ET, Naghavi M, Alayhs M (2008) Study of the essential oil variation of Ferula gummosa samples from Iran. Chem Nat Compd 44:124–126

    Article  Google Scholar 

  • Kumar S, Kalra S, Singh B, Kumar A, Kaur J, Singh K (2016) RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis. Funct Integr Genomics 16:37–55

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 12:1

    Article  Google Scholar 

  • Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396. doi:10.1038/nprot.2006.59

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh Milani J, Rezaii K, Safari M, Ghanbarzadeh B, Phillips GO (2015) Extraction and physicochemical properties of Barijeh (Ferula galbaniflua) gum. Journal of food and Bioprocess Eng 1:9–20

    Google Scholar 

  • Mortazaienezhad F, Sadeghian MM (2006) Investigation of compounds from galbanum (Ferula gummosa) Boiss. Asian Journal of Plant Sciences

  • Najafabadi AS, Naghavi MR, Farahmand H, Abbasi A, Yazdanfar N (2017) Chemical composition of the essential oil from oleo-gum-resin and different organs of Ferula gummosa. Journal of Essential Oil Bearing Plants 20:282–288

    Article  CAS  Google Scholar 

  • Offerman JD, Rychlik W (2003) Oligo primer analysis software. In: Introduction to bioinformatics. Springer, pp 345–355

  • Ophir R et al (2014) Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity. PLoS One 9. doi:10.1371/journal.pone.0088998

  • Panda H (2003) Herbal soaps & detergents hand book

  • Pathan M et al (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  • Sangwan NS (2014) Transcriptomics in aid to the establishment of secondary metabolic pathways in non-model plants. Next generation:sequencing & applications 1:1–2 doi:10.4172/jngsa.1000e101

  • Sayyah M, Mandgary A, Kamalinejad M (2002) Evaluation of the anticonvulsant activity of the seed acetone extract of Ferula gummosa Boiss. against seizures induced by pentylenetetrazole and electroconvulsive shock in mice. J Ethnopharmacol 82:105–109

    Article  PubMed  Google Scholar 

  • Seyed B, Nabavi F, Ebrahimzadeh A, Nabavi M (2010) Antioxidant activity of flower, stem and leaf extracts of Ferula gummosa Boiss. Grasas Aceites 61:244–250. doi:10.3989/gya.110809

    Article  Google Scholar 

  • Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Unna R, Boursnell C, Patro R, Hibberd J, Kelly S (2016) TransRate: reference free quality assessment of de novo transcriptome assemblies. Genome research:gr. 196469.196115

  • Tan LQ et al (2013) Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 8:e81611. doi:10.1371/journal.pone.0081611

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-N, Tang L, Hou Y, Wang P, Yang H, Wei C-L (2016) Differential transcriptome analysis of leaves of tea plant Camellia sinensis. Functional & integrative genomics 16:383–398

    Article  CAS  Google Scholar 

  • Ye J et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Center for International Scientific Studies & Collaboration (CISSC) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Sobhani Najafabadi or Mohammad Reza Naghavi.

Electronic supplementary material

ESM 1

(DOCX 17 kb).

ESM 2

(DOCX 21 kb).

ESM 3

(DOCX 17 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani Najafabadi, A., Naghavi, M.R., Farahmand, H. et al. Transcriptome and metabolome analysis of Ferula gummosa Boiss. to reveal major biosynthetic pathways of galbanum compounds. Funct Integr Genomics 17, 725–737 (2017). https://doi.org/10.1007/s10142-017-0567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-017-0567-7

Keywords

Navigation