Skip to main content
Log in

Type 3 iodothyronine deiodinase in neonatal goats: molecular cloning, expression, localization, and methylation signature

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Type 3 iodothyronine deiodinase (DIO3) is an important enzyme in the metabolism of thyroid hormones. It plays critical roles in fetal development and neonatal growth and is especially important for brain development in mammals. In the present study, we profiled the expression pattern and methylation signature of the DIO3 gene in goats. The complete coding sequence of caprine DIO3 encoded a protein of 301 amino acids and harbored an internal selenocysteine-encoding TGA codon. The DIO3 messenger RNA (mRNA) was predominantly expressed in the neonatal goat liver (P < 0.01), while expression in other tissues was quite low, with the lowest levels in the lung. In in situ hybridization, the DIO3 mRNA was predominantly localized in the liver and the lowest content was detected in the lung. The DIO3 transcript was widely localized in neurons and the neuropil. Methylation profiling of the DIO3 CpG island showed a significant difference between the 5′ region (CpGs_1∼24) and the 3′ region (CpG_25∼51) of the coding region. Furthermore, no significant difference in methylation status was observed among the six tested tissues with levels in the range of 29.11–33.12 %. The CpG islands in the intergenic-differentially methylated region (IG-DMR) showed significantly different methylated levels among tissues, and the highest methylated level was observed in lung (CpG island 1, 69.34 %) and longissimus dorsi (LD) (CpG island 2, 52.62 %) tissues. Our study lays a foundation for understanding DIO3 function and the diseases caused by altered methylation profiles of the DIO3 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aran D, Toperoff G, Rosenberg M, Hellman A (2011) Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet 20:670–680

    Article  CAS  PubMed  Google Scholar 

  • Bates JM, St Germain DL, Galton VA (1999) Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology 140:844–851

    CAS  PubMed  Google Scholar 

  • Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Invest 25:268–288

    Article  CAS  PubMed  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  CAS  PubMed  Google Scholar 

  • Ching TT, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, Albertson DG, Fridlyand J, Mao JH, Shchors K, Weiss WA, Costello JF (2005) Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet 37:645–651

    Article  CAS  PubMed  Google Scholar 

  • Claus R, Lucas DM, Stilgenbauer S, Ruppert AS, Yu L, Zucknick M, Mertens D, Bühler A, Oakes CC, Larson RA, Kay NE, Jelinek DF, Kipps TJ, Rassenti LZ, Gribben JG, Döhner H, Heerema NA, Marcucci G, Plass C, Byrd JC (2012) Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J Clin Oncol 30:2483–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24:306–316

  • Darras VM, Hume R, Visser TJ (1999) Regulation of thyroid hormone metabolism during fetal development. Mol Cell Endocrinol 151:37–47

    Article  CAS  PubMed  Google Scholar 

  • Dussault JH, Ruel J (1987) Thyroid hormones and brain development. Annu Rev Physiol 49:321–334

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escamez MJ, Guadano-Ferraz A, Cuadrado A, Bernal J (1999) Type 3 iodothyronine deiodinase is selectively expressed in areas related to sexual differentiation in the newborn rat brain. Endocrinology 140:5443–5446

    Article  CAS  PubMed  Google Scholar 

  • Galton VA, Martinez E, Hernandez A, St Germain EA, Bates JM, St Germain DL (1999) Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J Clin Invest 103:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galton VA, McCarthy PT, St Germain DL (1991) The ontogeny of iodothyronine deiodinase systems in liver and intestine of the rat. Endocrinology 128:1717–1722

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Fiering S, Martinez E, Galton VA, St Germain D (2002) The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology 143:4483–4486

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Lyon GJ, Schneider MJ, St Germain DL (1999) Isolation and characterization of the mouse gene for the type 3 iodothyronine deiodinase. Endocrinology 140:124–130

    CAS  PubMed  Google Scholar 

  • Hernandez A, Park JP, Lyon GJ, Mohandas TK, St Germain DL (1998) Localization of the type 3 iodothyronine deiodinase (DIO3) gene to human chromosome 14q32 and mouse chromosome 12F1. Genomics 53:119–121

    Article  CAS  PubMed  Google Scholar 

  • Illingworth R, Kerr A, Desousa D, Jørgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22

    Article  PubMed  PubMed Central  Google Scholar 

  • Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK (2012) On the presence and role of human gene-body DNA methylation. Oncotarget 3:462–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MM, McCann UD, Yaskoski KA, Larsen PR, Leonard JL (1981) Anatomical distribution of phenolic and tyrosyl ring iodothyronine deiodinases in the nervous system of normal and hypothyroid rats. Endocrinology 109:397–402

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MM, Yaskoski KA (1980) Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. J Clin Invest 66:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kester MH, Martinez de Mena R, Obregon MJ, Marinkovic D, Howatson A, Visser TJ, Hume R, Morreale de Escobar G (2004) Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 89:3117–3128

    Article  CAS  PubMed  Google Scholar 

  • Kohrle J (2002) Iodothyronine deiodinases. Methods Enzymol 347:125–167

    Article  CAS  PubMed  Google Scholar 

  • Leonard JL, Farwell AP, Yen PM, Chin WW, Stula M (1994) Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology 135:548–555

    CAS  PubMed  Google Scholar 

  • Lim SP, Wong NC, Suetani RJ, Ho K, Ng JL, Neilsen PM, Gill PG, Kumar R, Callen DF (2012) Specific-site methylation of tumour suppressor ANKRD11 in breast cancer. Eur J Cancer 48:3300–3309

    Article  CAS  PubMed  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JL, Altman J (1972) The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res 44:25–36

    Article  CAS  PubMed  Google Scholar 

  • Puymirat J (1992) Thyroid receptors in the rat brain. Prog Neurobiol 39:281–294

    Article  CAS  PubMed  Google Scholar 

  • Qiao M, Wu HY, Guo L, Mei SQ, Zhang PP, Li FE, Zheng R, Deng CY (2012) Imprinting analysis of porcine DIO3 gene in two fetal stages and association analysis with carcass and meat quality traits. Mol Biol Rep 39:2329–2335

    Article  CAS  PubMed  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  CAS  PubMed  Google Scholar 

  • Richard K, Hume R, Kaptein E, Sanders JP, van Toor H, De Herder WW, den Hollander JC, Krenning EP, Visser TJ (1998) Ontogeny of iodothyronine deiodinases in human liver. J Clin Endocrinol Metab 83:2868–2874

    CAS  PubMed  Google Scholar 

  • Salvatore D, Low SC, Berry M, Maia AL, Harney JW, Croteau W, St Germain DL, Larsen PR (1995) Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme. J Clin Invest 96:2421–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini F, Pinchera A, Ceccarini G, Castagna M, Rosellini V, Mammoli C, Montanelli L, Zucchi V, Chopra IJ, Chiovato L (2001) Evidence for a role of the type III-iodothyronine deiodinase in the regulation of 3,5,3′-triiodothyronine content in the human central nervous system. Eur J Endocrinol 144:577–583

    Article  CAS  PubMed  Google Scholar 

  • Sohn BH, Park IY, Lee JJ, Yang SJ, Jang YJ, Park KC, Kim DJ, Lee DC, Sohn HA, Kim TW, Yoo HS, Choi JY, Bae YS, Yeom YI (2010) Functional switching of TGF-beta1 signaling in liver cancer via epigenetic modulation of a single CpG site in TTP promoter. Gastroenterology 138:1898–1908

    Article  CAS  PubMed  Google Scholar 

  • Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102:3336–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, Fujita N, Nakao M, Taga T (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR (1999) Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology 140:784–790

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Technology Support Program of Sichuan province (2014NZ0001 and 2015NZ0112); the key fund of the Education Department of Sichuan Province, China (13ZA0264); the National Natural Science Foundation of China (31501936); and the Chinese Domestic Animal Germplasm Resources Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ping Zhang.

Ethics declarations

All researches involving animals were approved by the Institutional Animal Care and Use Committee of the College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, People’s Republic of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Tao Zhong and Peng-Fei Jin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phylogenetic trees constructed using the Minimum Evolution (A), Maximum Parsimony (B) and UPGMA (C) methods. (GIF 336 kb)

High resolution image (TIF 780 kb)

Table S1

The methylation level of DIO3 CpG island 3 in the six neonatal tissues (DOC 62 kb)

Table S2

The methylation level of IG-DMR CpG islands 1 and 2 in the six neonatal tissues (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Jin, PF., Zhao, W. et al. Type 3 iodothyronine deiodinase in neonatal goats: molecular cloning, expression, localization, and methylation signature. Funct Integr Genomics 16, 419–428 (2016). https://doi.org/10.1007/s10142-016-0493-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0493-0

Keywords

Navigation