Skip to main content

Advertisement

Log in

Linkage of cold acclimation and disease resistance through plant–pathogen interaction pathway in Vitis amurensis grapevine

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis ‘Zuoshan-1’ after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant–pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis ‘Zuoshan-1’ grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in ‘Zuoshan-1’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AC’t Hoen P, Ariyurek Y, Thygesen HH et al (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

  • Agarwal M, Hao Y, Kapoor A et al (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    CAS  PubMed  Google Scholar 

  • Ait Barka E, Audran J (1997) Response of champenoise grapevine to low temperatures: changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. J Horticult Sci 72:577–582

    Google Scholar 

  • Alexander D, Goodman RM, Gut-Rella M et al (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci 90:7327–7331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anchordoguy TJ, Rudolph AS, Carpenter JF et al (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    CAS  PubMed  Google Scholar 

  • Antikainen M, Griffith M (1997) Antifreeze protein accumulation in freezing‐tolerant cereals. Physiol Plant 99:423–432

    CAS  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    PubMed  Google Scholar 

  • Benedict C, Skinner JS, Meng R et al (2006) The CBF1‐dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  • Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brüggemann W, Beyel V, Brodka M et al (1999) Antioxidants and antioxidative enzymes in wild-type and transgenic Lycopersicon genotypes of different chilling tolerance. Plant Sci 140:145–154

    Google Scholar 

  • Carpaneto A, Ivashikina N, Levchenko V et al (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen R, Jiang H, Li L et al (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell Online 24:2898–2916

    CAS  Google Scholar 

  • Christersson L (1978) The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies. Physiol Plant 44:288–294

    Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    CAS  Google Scholar 

  • Cocozza C, Lasserre B, Giovannelli A et al (2009) Low temperature induces different cold sensitivity in two poplar clones (Populus × canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’). J Exp Bot 60:3655–3664

    CAS  PubMed  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529

    CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O et al (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai R, Ge H, Howard S et al (2012) Transcriptional expression of stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine. Plant Sci 197:70–76

    CAS  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ et al (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell Online 21:972–984

    CAS  Google Scholar 

  • Dong C-H, Agarwal M, Zhang Y et al (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci 103:8281–8286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S et al (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    CAS  PubMed  Google Scholar 

  • Fan J, Hill L, Crooks C et al (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchigami L, Weiser C, Evert D (1971) Induction of cold acclimation in Cornus stolonifera Michx. Plant Physiol 47:98–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller M, Telli G (1999) An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Ann Appl Biol 135:589–595

    Google Scholar 

  • Gao Y, Li H, Deng D et al (2012) Characterization and expression analysis of the maize RING-H2 finger protein gene ZmXERICO responsive to plant hormones and abiotic stresses. Acta Physiol Plant 34:1529–1535

    CAS  Google Scholar 

  • Gatschet M, Taliaferro C, Porter D et al (1996) A cold-regulated protein from bermudagrass crowns is a chitinase. Crop Sci 36:712–718

    CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ et al (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann J et al (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamel L-P, Benchabane M, Major I et al (2011) The genomics of poplar-rust interactions to improve tree resistance against fungal disease. BMC Proc 5(Suppl 7):I12

    PubMed Central  Google Scholar 

  • Hegedus D, Yu M, Baldwin D et al (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397

    CAS  PubMed  Google Scholar 

  • Hill L, Reimholz R, Schröder R et al (1996) The onset of sucrose accumulation in cold‐stored potato tubers is caused by an increased rate of sucrose synthesis and coincides with low levels of hexose‐phosphates, an activation of sucrose phosphate synthase and the appearance of a new form of amylase. Plant Cell Environ 19:1223–1237

    CAS  Google Scholar 

  • Hincha DK, Meins F Jr, Schmitt JM (1997) [beta]-1,3-Glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol 114:1077–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hon WC, Griffith M, Chong P et al (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 104:971–980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A et al (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Liu L, Xiao B et al (2010) Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. J Plant Physiol 167:1307–1315

    CAS  PubMed  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL et al (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    CAS  PubMed Central  PubMed  Google Scholar 

  • John P (1997) Ethylene biosynthesis: the role of 1‐aminocyclopropane‐1‐carboxylate (ACC) oxidase, and its possible evolutionary origin. Physiol Plant 100:583–592

    CAS  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W et al (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci 93:11274–11279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kang HM, Saltveit ME (2001) Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant 113:548–556

    CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JC, Lee SH, Cheong YH et al (2001) A novel cold‐inducible zinc finger protein from soybean, SCOF‐1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    CAS  PubMed  Google Scholar 

  • Kim JY, Kim WY, Kwak KJ et al (2010) Zinc finger‐containing glycine‐rich RNA‐binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ 33:759–768

    CAS  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM et al (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell Online 8:489–503

    CAS  Google Scholar 

  • Korn M, Gartner T, Erban A et al (2010) Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol Plant 3:224–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krol M, Huner NP (1985) Growth and development at cold-hardening temperatures. Pigment and benzoquinone accumulation in winter rye. Can J Bot 63:716–721

    CAS  Google Scholar 

  • Kumar S, Kaur G, Nayyar H (2008) Exogenous application of abscisic acid improves cold tolerance in chickpea (Cicer arietinum L.). J Agron Crop Sci 194:449–456

    CAS  Google Scholar 

  • Lafuente M, Zacarias L, Martínez-Téllez M et al (2001) Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J Agric Food Chem 49:6020–6025

    CAS  PubMed  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J et al (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li C, Junttila O, Ernstsen A et al (2003) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiol Plant 117:206–212

    CAS  Google Scholar 

  • Li ZT, Dhekney SA, Gray DJ (2011) PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Rep 30:1–11

    PubMed  Google Scholar 

  • Lissarre M, Ohta M, Sato A, Miura K (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav 5:948–952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu K, Wang L, Xu Y et al (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016

    CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Yang Y et al (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68:17–30

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Llorente F, Oliveros JC, Martinez-Zapater JM et al (2000) A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211:648–655

    CAS  PubMed  Google Scholar 

  • Mare C, Mazzucotelli E, Crosatti C et al (2004) Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55:399–416

    CAS  PubMed  Google Scholar 

  • Marin E, Divol F, Bechtold N et al (2006) Molecular characterization of three Arabidopsis soluble ABC proteins which expression is induced by sugars. Plant Sci 171:84–90

    CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S et al (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathiason K, He D, Grimplet J et al (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81–96

    CAS  PubMed  Google Scholar 

  • Medina J, Bargues M, Terol J et al (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miguel G, Fontes C, Antunes D et al (2004) Anthocyanin concentration of “Assaria” pomegranate fruits during different cold storage conditions. BioMed Res Int 2004:338–342

    Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 °C. Plant Cell Online 7:321–331

    CAS  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium). Plant Physiol 102:1227–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrissy AS, Morin RD, Delaney A et al (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19:1825–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morsy MR, Jouve L, Hausman JF et al (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro M, Marque G, Ayax C et al (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogueira FT, Schlögl PS, Camargo SR et al (2005) SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169:93–106

    CAS  Google Scholar 

  • Noji M, Inoue K, Kimura N et al (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745

    CAS  PubMed  Google Scholar 

  • Nomura K, DebRoy S, Lee YH et al (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    CAS  PubMed  Google Scholar 

  • Nordin Henriksson K, Trewavas A (2003) The effect of short‐term low‐temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant Cell Environ 26:485–496

    Google Scholar 

  • Novillo F, Alonso JM, Ecker JR et al (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101:3985–3990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. PNAS 104:21002–21007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng X, Hu Y, Tang X et al (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    CAS  PubMed  Google Scholar 

  • Pennycooke JC, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia × hybrida). Environ Exp Bot 53:225–232

    CAS  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    PubMed  Google Scholar 

  • Pihakaski-Maunsbach K, Griffith M, Antikainen M et al (1996) Immunogold localization of glucanase-like antifreeze protein in cold acclimated winter rye. Protoplasma 191:115–125

    CAS  Google Scholar 

  • Pihakaski‐Maunsbach K, Moffatt B, Testillano P et al (2001) Genes encoding chitinase‐antifreeze proteins are regulated by cold and expressed by all cell types in winter rye shoots. Physiol Plant 112:359–371

    PubMed  Google Scholar 

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    CAS  PubMed  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK et al (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    CAS  PubMed  Google Scholar 

  • Ṣahin-Çevik M, Moore GA (2006) Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol Biol 62:83–97

    PubMed  Google Scholar 

  • Saltveit ME (2000) Discovery of chilling injury. Discov Plant Biol 3:423–448

    CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C et al (2002) Calcium at the crossroads of signaling. Plant Cell Online 14:S401–S417

    CAS  Google Scholar 

  • Sangwan V, Foulds I, Singh J et al (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    CAS  PubMed  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN et al (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Sigurðardóttir AG, Arnórsdóttir J, Thorbjarnardóttir SH et al (2009) Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase. Biochim et Biophys Acta (BBA)-Protein Proteomics 1794:512–518

    Google Scholar 

  • Sowiński P, Dalbiak A, Tadeusiak J et al (1999) Relations between carbohydrate accumulation in leaves, sucrose phosphate synthase activity and photoassimilate transport in chilling treated maize seedlings. Acta Physiol Plant 21:375–381

    Google Scholar 

  • Talanova V, Titov A, Topchieva L et al (2009) Expression of WRKY transcription factor and stress protein genes in wheat plants during cold hardening and ABA treatment. Russ J Plant Physiol 56:702–708

    CAS  Google Scholar 

  • Tattersall EA, Grimplet J, DeLuc L et al (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317–333

    CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci 96:4698–4703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomashow MF (2001) So what's new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EA et al (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124

    CAS  PubMed  Google Scholar 

  • Tittarelli A, Santiago M, Morales A et al (2009) Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol 9:121

    PubMed Central  PubMed  Google Scholar 

  • Tornero P, Conejero V, Vera P (1997) Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J Biol Chem 272:14412–14419

    CAS  PubMed  Google Scholar 

  • Van Dam N (2009) How plants cope with biotic interactions. Plant Biol 11:1–5

    PubMed  Google Scholar 

  • Venter M, Groenewald J-H, Botha FC (2006) Sequence analysis and transcriptional profiling of two vacuolar H+-pyrophosphatase isoforms in Vitis vinifera. J Plant Res 119:469–478

    CAS  PubMed  Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell Online 15:626–638

    CAS  Google Scholar 

  • von Groll U, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell Online 14:1527–1539

    Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66:969–982

    CAS  PubMed  Google Scholar 

  • Wegrzyn T, Reilly K, Cipriani G et al (2000) A novel α-amylase gene is transiently upregulated during low temperature exposure in apple fruit. Eur J Biochem 267:1313–1322

    CAS  PubMed  Google Scholar 

  • Weiser C (1970) Cold resistance and injury in woody plants knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269–1278

    CAS  PubMed  Google Scholar 

  • Welling A, Moritz T, Palva ET et al (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widjaja I, Lassowskat I, Bethke G et al (2010) A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. Plant J 61:249–258

    CAS  PubMed  Google Scholar 

  • Wu J, Zhang Y, Zhang H et al (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234

    PubMed Central  PubMed  Google Scholar 

  • Xian L, Sun P, Hu S et al (2014) Molecular cloning and characterization of CrNCED1, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Citrus reshni, with functions in tolerance to multiple abiotic stresses. Planta 239:61–77

    CAS  PubMed  Google Scholar 

  • Xiao H, Nassuth A (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep 25:968–977

    CAS  PubMed  Google Scholar 

  • Xiao H, Siddiqua M, Braybrook S et al (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421

    CAS  PubMed  Google Scholar 

  • Xiao H, Tattersall EA, Siddiqua MK et al (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31:1–10

    CAS  PubMed  Google Scholar 

  • Xin ZG, Browse J (1998) eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci 95:7799–7804

  • Xin H, Zhu W, Wang L et al (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS ONE 8:e58740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Ishitani M, Lee H et al (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Yu Y, Ding J et al (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    CAS  PubMed  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    CAS  PubMed  Google Scholar 

  • Yeh S, Moffatt BA, Griffith M et al (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol 124:1251–1264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimune K, Galkin A, Kulakova L et al (2005) Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures. Extremophiles 9:145–150

    CAS  PubMed  Google Scholar 

  • Yun KY, Park MR, Mohanty B et al (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:16

    PubMed Central  PubMed  Google Scholar 

  • Zhang X, Fowler SG, Cheng H et al (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919

    CAS  PubMed  Google Scholar 

  • Zhao M-G, Chen L, Zhang L-L et al (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu BL, Chen TH, Li PH (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol 21:729–735

    CAS  PubMed  Google Scholar 

  • Zhu J, Shi H, Lee B et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 101:9873–9878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Verslues PE, Zheng X et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci U S A 102:9966–9971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Universities Scientific Fund (Grant No. 2012RC019) and earmarked fund for Modern Agro-industry Technology Research System (CARS-30-yz-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional File 1

List of DEGs selected for real-time RT-PCR. (DOCX 35 kb)

Additional File 2

Complete list of transcripts attributed to 4 °C in ‘Zuoshan-1’ grapevine. (XLSX 847 kb)

Additional File 3

List of ‘Zuoshan-1’ transcripts upregulated for at least 20-fold in 4 °C library. (XLSX 85 kb)

Additional File 4

Complete list of involved pathways for DEGs. Pathways with Q value < 0.05 are significantly enriched for DEGs. (DOC 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, Y., Yin, L. et al. Linkage of cold acclimation and disease resistance through plant–pathogen interaction pathway in Vitis amurensis grapevine. Funct Integr Genomics 14, 741–755 (2014). https://doi.org/10.1007/s10142-014-0392-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0392-1

Keywords

Navigation