Skip to main content
Log in

Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Panax quinquefolius is one of perennial herbs and well known for its outstanding pharmacological activity. Ginsenosides are thought to be the main active ingredients in P. quinquefolius and exist in many kinds of plant genus Panax (ginseng). Protopanaxatriol synthase, which is considered cytochrome P450 (CYP450) in ginsenoside biosynthesis pathway can convert protopanaxadiol into protopanaxatriol. However, the protopanaxatriol synthase gene in P. quinquefolius has not been identified. Here, we cloned and identified a protopanaxatriol synthase gene from P. quinquefolius (CYP6H, GenBank accession no. KC190491) at the first time, reverse transcription-PCR (RT-PCR) analysis showed no obvious transcription change of CYP6H in methyl jasmonate (MeJA)-induced hairy roots. Ectopic expression of CYP6H in Saccharomyces cerevisiae resulted in the production of protopanaxatriol with added exogenous protopanaxadiol and confirmed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC/APCIMS). Moreover, high-performance liquid chromatography (HPLC) analysis shows that RNA interferences of CYP6H in transgenic hairy roots could increase the accumulation of protopanaxadiol-type ginsenosides and decrease the accumulation of protopanaxatriol-type ginsenosides, whereas the effect of overexpression CYP6H in transgenic hairy roots was contrary. Our study indicated that CYP6H is a gene encoding protopanaxadiol 6-hydroxylase which could convert protopanaxadiol into protopanaxatriol in P. quinquefolius ginsenoside biosynthesis, we also have confirmed the function of CYP6H on effect accumulation of ginsenosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Assinewe VA, Baum BR, Gagnon D, Arnason JT (2003) Phytochemistry of wild populations of Panax quinquefolius L. (North American ginseng). J Agric Food Chem 51:4549–4553

    Article  CAS  PubMed  Google Scholar 

  • Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M et al (2004) Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68:85–90

    Article  CAS  PubMed  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman CI, Hebert JH, Reddy P (2003) The effects of Panax ginseng on quality of life. J Clin Pharm Ther 28:5–15

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D et al (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156

    Article  CAS  PubMed  Google Scholar 

  • Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS (2003) Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 10:600–605

    Article  CAS  PubMed  Google Scholar 

  • Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662

    CAS  PubMed  Google Scholar 

  • Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71(1):36–46

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073

    CAS  PubMed  Google Scholar 

  • Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53(9):1535–1545

    CAS  PubMed  Google Scholar 

  • He C, Zhou D, Li J, Han H, Ji G, Yang L, Wang Z (2014) Identification of 20 (S)-protopanaxatriol metabolites in rats by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry and nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 88:497–508

    Article  CAS  PubMed  Google Scholar 

  • Hey SJ, Powers SJ, Beale MH, Hawkins ND, Ward JL, Halford NG (2006) Enhanced seed phytosterol accumulation through expression of a modified HMG-CoA reductase. Plant Biotechnol J 4:219–229

    Article  CAS  PubMed  Google Scholar 

  • Kiefer D, Pantuso T (2003) Panax ginseng. Am Fam Physician 68:1539–1542

    PubMed  Google Scholar 

  • Kim OT, Bang KW, Kim YC, Hyun DY, Kim MY, Cha SW (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Organ Cult 98:25–33

    Article  CAS  Google Scholar 

  • Kima SJ, Murthy HN, Hahn EJ, Lee HL, Paek KY (2007) Parameters affecting the extraction of ginsenosides from the adventitious roots of ginseng (Panax ginseng C.A. Meyer). Sep Purif Technol 56:401–406

    Article  Google Scholar 

  • Landl KM, Klösch B, Turnowsky F (1996) ERG1, encoding Squalene epoxidase, is located on the right arm of chromosome VII of Saccharomyces cerevisiae. Yeast 12:609–613

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG et al (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    CAS  PubMed  Google Scholar 

  • Liang Y, Zhao S (2008) Progress in understanding of ginsenoside biosynthesis. Plant Biol (Stuttg) 10:415–421

    Article  CAS  Google Scholar 

  • Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J et al (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12(Suppl 5):S5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72:689–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samukawa K, Yamashita H, Matsuda H, Kubo M (1995) Simultaneous analysis of saponins in ginseng radix by high performance liquid chromatography. Chem Pharm Bull 43:137–141

    Article  CAS  Google Scholar 

  • Sasaki K, Minowa N, Kuzuhara H, Nishiyama S, Omoto S (1997) Synthesis and hepatoprotective effects of soyasapogenol B derivatives. Bioorg Med Chem Lett 7:85–88

    Article  CAS  Google Scholar 

  • Sun Y, Zhao SJ, Liang YL et al (2013) Regulation and differential expression of protopanaxadiol synthase in Asian and American ginseng ginsenoside biosynthesis by RNA interferences. Plant Growth Regul 71(3):207–217

    Article  CAS  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149

    Article  CAS  PubMed  Google Scholar 

  • Uchida H, Sugiyama R, Nakayachi O, Takemura M, Ohyama K (2007) Expression of the gene for sterol-biosynthesis enzyme squalene epoxidase in parenchyma cells of the oil plant, Euphorbia tirucalli. Planta 226:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 55:567–575

    Article  CAS  PubMed  Google Scholar 

  • Yendo ACA, de Costa F, Gosmann G, Fett-Neto AG (2010) Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields. Mol Biotechnol 46:94–104

    Article  CAS  PubMed  Google Scholar 

  • Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    Article  CAS  Google Scholar 

  • Yue CJ, Zhou X, Zhong JJ (2008) Protopanaxadiol 6-hydroxylase and its role in regulating the ginsenoside heterogeneity in Panax notoginseng cells. Biotechnol Bioeng 100(5):933–940

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863) no. 2013AA102604, projects of the National Science Foundation of China no. 30970259 and 31270337, research fund for the Doctoral Program of Higher Education of China no. 20120061110038, and Scientific and Technological Development Plan Project of Jilin Province no. 20130102041JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Jing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, SJ., Liang, YL. et al. Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius . Funct Integr Genomics 14, 559–570 (2014). https://doi.org/10.1007/s10142-014-0386-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0386-z

Keywords

Navigation